Appendix A17.1

Arboricultural Impact Assessment

Arboricultural Impact
Assessment and Method Statement

Tree Experts in the Built Environment

John Morris Arboricultural Gonsultancy

Client:
 Jacobs

Project: National Transport Authority
BusConnects Core Bus Corridor
Route 13
Bray to Dublin City Centre

ARBORICULTURAL IMPACT ASSESSMENT \& METHOD STATEMENTS

Date:
02 ${ }^{\text {nd }}$ May 2023
Ref: 20-079-05
Revision:
Version 9

Originating Author:	Date:	Version	Notes:
JM	01.02 .21	1	Original Document
Reviewed By:			
JL	30.03 .21	1	Quality Control
Approved for Issue By:	02.04 .21	1	
JM	17.04 .21	2	First Draft
JM	10.06 .21	3	Proposal Revisions
JM	30.06 .21	4	Proposal Revisions
JM	20.06 .22	5	Proposal Revisions
JM	21.07 .22	6	Proposal Revisions
JM	01.08 .22	7	Client Revisions
JM	21.08 .22	8	Client Revisions
JM	02.05 .23	9	Client Revisions
JM		Final Document for Client	

Prepared by:

John Morris Arboricultural Consultancy Ltd Executive Suites	0	+44 (0) 7830793487
Weavers Court	Δ	info@johnmorristrees.com
Belfast		
BT12 5GH	\pm	www.johnmorristrees.com

四 1 ((

Prepared for:

Jacobs

Merrion House
Merrion Road
Dublin
D04 R2C5

COPYRIGHT ©

The copyright of this document remains with John Morris Arboricultural Consultancy Ltd. Its contents must not be copied or reproduced in whole or in part for any purpose without the written consent of John Morris Arboricultural Consultancy Ltd.

This report provides an assessment of trees on and within influencing distance of the proposed Bray to Dublin City Centre National Transport Authority BusConnects Core Bus Corridor, in accordance with the guidelines outlined in BS5837:2012 Trees in relation to design, demolition and construction Recommendations.

It includes:

- A Tree Schedule that provides information for each tree;
- A Tree Constraints Plan that illustrates the location and constraints posed by trees;
- An Arboricultural Impact Assessment that considers the impacts of the development proposal to those trees;
- An Arboricultural Method Statement that outlines how retained trees will be protected during construction, and;
- A Preliminary Design Tree Removal Plan that illustrates the impact of the proposal upon trees.

The information contained in this report allows Dublin City Council and Dún Laoghaire-Rathdown County Council to assess tree related issues associated with the development proposal.

The aim is to present the information in a manner that can easily be understood by people without specific knowledge of tree related matters.

Executive Summary

The development proposal is for the construction of a network of bus priority and cycling lanes along the Bray to Dublin City Centre Core Bus Corridor, including all associated site works.

A tree survey of the route, which was undertaken in accordance with BS5837:2012 Trees in relation to design, demolition and construction - Recommendations, identified 1,611 individual trees, groups of trees and garden hedges which have been categorised as follows:

144 of high arboricultural quality	(Category A)
631 of moderate arboricultural quality	(Category B)
795 of low arboricultural quality	(Category C)
41 of poor arboricultural quality	(Category U)

The proposal will require the removal of 359 individual trees, 41 tree groups or parts of tree groups and ten hedges or parts of hedges, that comprise 30 of high quality, 135 of moderate quality and 245 of low quality. The age class of these trees, groups of trees and hedges includes 15 young, 144 semimature, 113 early mature, 134 mature and four over mature.

A total of 41 trees are recommended to be removed and replaced irrespective of the proposal, due to physiological or structural decline, meaning they cannot realistically be retained in the context of current land use for longer than 10 years, or for reasons of safety because they pose and unacceptable risk to persons or property. It is recommended that where possible these trees are replaced with new trees of better quality, as good arboricultural practice.

The design and layout of the site has been influenced by local planning policy in relation to trees and hedgerows, as outlined in the Dublin City Development Plan (2016-2022), Dublin City Tree Strategy (2016-2020), Dún Laoghaire-Rathdown County Development Plan (2022-2028) and DLR Trees Strategy 2011-2015.

The aim has been to include those arboricultural features that are capable of providing a substantial future contribution in terms of their amenity, landscape and ecological value, including those that contribute to the landscape character of local areas. In certain areas there have been unavoidable tree losses due to road widening works, which are understood to be an essential requirement of the proposal.

To mitigate the removal of arboricultural features, it is understood that a landscape plan submitted as part of the application will propose a diverse mix of new trees and vegetation along the route to function in harmony with the built environment. This new planting should include a mixture of tree species that are chosen with consideration to local site and environmental conditions, native environment, future site usage, provision of ecosystem services, contribution that can be made to local communities, and to complement and enhance the existing tree population in consideration of future climate change predictions, and pests and diseases that are likely to affect the urban forest of Dublin. The overall aim of new tree planting should be to plant the right tree in the right place to secure a net gain and improvement on the existing canopy cover, that will provide significant benefits
long into the future.

The following measures are required to ensure the protection of retained trees during construction:

- Tree Protective Fencing \& Barriers
- Construction Exclusion Zones
- Temporary Ground Protection
- Permanent Ground Protection
- Pollution Control
- Specialist Working Methods
- Arboricultural Monitoring \& Supervision

It is proposed to illustrate the locations where protection measures are required on a Construction Stage Tree Protection Plan, at detailed design stage.

1. INTRODUCTION 8
InsTRUCTION 8
SCOPE 8
2. TREE SURVEY 8
Site VISIT 8
Description of Route 9
Description of Trees 10
3. ARBORICULTURAL PRINCIPLES 11
Trees and Development 11
Below Ground Constraints 12
Impacts of Construction \& Development 12
Root Protection Areas 12
Above Ground Constraints 13
4. PLANNING POLICY \& STATUTORY CONSIDERATIONS 13
Planning Policy 13
The Dublin City Development Plan (2016-2022) 13
The Dún Laoghaire-Rathdown County Council Development Plan (2022-2028) 15
Tree Preservation Orders \& Conservation Areas 16
Special Amenity Area Orders 16
Felling Licences 17
Wildlife 18
5. ARBORICULTURAL IMPACT ASSESSMENT 18
Development Proposal 18
Design Principles 18
Tree removals and pruning 18
INCURSIONS WITHIN RPAS 21
MItigation \& IMPROVEMENTS 22
6. ARBORICULTURAL METHOD STATEMENTS 22
Purpose 22
Arboricultural Method Statements. 22
Project Arboriculturist. 23
Pre Commencement Meeting 23
Permanent Ground Protection 24
Three-Dimensional Cellular Confinement Systems 25
Demolition of Built Structures 25
Installation of Lighting Columns / Railings / Fences 27
Installation of Services 27
SOFT LANDSCAPING 27
Excavations and Removal of Existing Surfaces 28
Upgrading Existing Surfaces 28
Transplanting Trees 28
7. ABOUT THE AUTHOR \& LIMITATIONS 29
Authors Qualifications \& Experience. 29
LIMITATIONS 30
Appendices 31
Appendix 1: Tree Survey Criteria (BS5837:2012) 31
BS5837:2012 Assessment Criteria \& Cascade Chart 32
Appendix 2 - Calculation of the Root Protection Area 33
Appendix 3 - Example of Tree Protective Fencing 35
Appendix 4 - Example of Tree Protective Signs 37
Appendix 5 - Example of Temporary Ground Protection 38
Appendix 6 - Guidance on Three-Dimensional Cellular Confinement Systems 39
Appendix 7 - Example of Three-Dimensional Cellular Confinement System 41

ATTACHMENTS

DOCUMENT TITLE	DOCUMENT REFERENCE
TREE SCHEDULE	$20-079-01$
TREE CONSTRAINTS PLAN	$20-079-01$
PRELIMINARY DESIGN TREE REMOVAL PLAN	$20-079-03$

1. INTRODUCTION

Instruction

1.1. Instruction was received from Jacobs on $10^{\text {th }}$ July 2020 to undertake a tree survey and prepare an arboricultural report in connection with a planning application for the construction of a network of bus priority and cycling lanes along the Bray to Dublin City Centre National Transport Authority (NTA) BusConnects Core Bus Corridor (CBC).

Scope

1.2. The survey has been carried out in accordance with BS5837:2012 Trees in relation to design, demolition and construction - Recommendations.
1.3. The information collected during the survey has been used in the preparation of this report.

2. TREE SURVEY

Site Visit

2.1. A tree survey of the proposed route was undertaken between Friday $17^{\text {th }}$ July and Thursday $30^{\text {th }}$ August 2020. Further surveys of additional sites were undertaken on Monday $30^{\text {th }}$ November and Tuesday $1^{\text {st }}$ December 2020, Monday $29^{\text {th }}$ November and Tuesday $30^{\text {th }}$ November 2021, and $20^{\text {th }}$ and $21^{\text {st }}$ March 2023.
2.2. The survey methodology and details of the assessment criteria can be found in Appendix 1.
2.3. A copy of the recorded data can be found in the Tree Schedule attached to this report.
2.4. The tree survey considered all trees that have the potential to be impacted by the proposed route including those outside the site boundary, but within influencing distance.
2.5. The extent of the tree survey has been marked on the Tree Constraints Plan (TCP) attached to this report.
2.6. The aboveground constraints posed by canopy spread are plotted as a continuous line around the tree shown in the corresponding BS5837 retention category colour, whilst belowground constraints posed by the Root Protection Area (RPA) have been plotted as a continuous black line with the text RPA inscribed.
2.7. The results of the survey allow the opportunity to balance the retention of significant trees against the opportunity to enhance the existing tree stock through proactive management and design.
2.8. A summary assessment of tree quality is contained in Table 1.

Table 1. Summary of tree quality.

	Category A	Category B	Category C	Category U	Total
Trees	140	585	659	41	$\mathbf{1 , 4 2 5}$
Groups	4	45	102	0	$\mathbf{1 5 1}$
Hedges	0	1	34	0	$\mathbf{3 5}$
Total	$\mathbf{1 4 4}$	$\mathbf{6 3 1}$	$\mathbf{7 9 5}$	$\mathbf{4 1}$	$\mathbf{1 , 6 1 1}$

Description of Route

2.9. The Bray to Dublin City Centre Route (hereinafter referred to as 'the Route') commences at the junction of Leeson Street Lower and St. Stephens Green. It extends along Leeson Street Lower and Upper including the existing one-way system on Sussex Road. It continues on Morehampton Road and Donnybrook Road through Donnybrook Village, and on to the Stillorgan Road. It intersects with the University College Dublin (UCD) to City Centre CBC at Nutley Lane and includes the Belfield Interchange at the entrance to UCD. It continues south on Stillorgan/Bray Road as far as the Loughlinstown Roundabout. The route then proceeds along the Dublin Road through Shankill and on to Bray through the Wilford Roundabout (M11 Access Roundabout) and Castle Street. The CBC terminates at the Dargle River Crossing where it ties into the proposed Bray Bridge Scheme (Figures 1a, 1b and 1c).

Figure 1a. Northern section of the Bray to Dublin City Centre Route (Source: BusConnects.ie).

Figure 1b. Central section of the Bray to Dublin City Centre Route (Source: BusConnects.ie).

John Morris Arboricultural Gonsultaney

Figure 1c. Southern section of the Bray to Dublin City Centre Route (Source: BusConnects.ie).

Description of Trees

2.10. There is a large proportion of high and moderate quality trees located along the southern section of the Route, particularly as you leave Bray town centre and continue along the R119 Dublin Road. This area is lined by mature woodlands that are located beyond stone walls on private lands and estates. These trees provide mature canopy cover and a green corridor between Bray and Shankill, offer significant visual amenity and are intrinsic features of the local landscape. Many of the trees are at the peak of maturity and therefore at the peak of their ability to deliver significant environmental and social benefits, with many likely to hold historic and cultural significance in the local area due to their age and location. There are a number of locations where existing trees on Dublin Road between Bray and Shankill are likely to have direct links to those recorded on Historic 6 Inch Ordnance Survey maps of 1837-1842 (Figure 2a \& 2b).

Figure 2a. Historic 6 Inch Ordnance Survey map (1837-1842) showing section of trees on Dublin Road between R761/R119 roundabout and Woodbrook Downs (Source: GeoHive, 2021).

Figure 2b. Historic 6 Inch Ordnance Survey map (1837-1842) showing section of trees on Dublin Road between Crinken Church and Shankill (Source: GeoHive, 2021).
2.11. The N11 comprises semi-mature and early mature mixed species shelter-belts and a number of younger trees alongside grass verges, footpaths and cycle lanes., which are generally of low to moderate arboricultural quality, and have likely been planted within the last 50 years. There are also some larger mature trees on private land adjoining the N11.
2.12. The quality and value of trees increases again significantly as you move from Donnybrook towards Dublin City Centre, with a high proportion of mature street trees that were likely planted in the early to mid-nineteenth century. The majority of these trees are located in footpaths and on private neighbouring properties and provide mature canopy cover and a green corridor into Dublin City Centre. These mature street trees contribute significantly to the local landscape character and streetscape, are likely to offer both visual and acoustic screening to residential dwellings and provide a vast array of ecosystem services to individuals and local communities.

3. ARBORICULTURAL PRINCIPLES

Trees and Development

3.1. Trees can provide a multitude of economic, environmental and social benefits to individuals and communities including (but not limited to) visual amenity and landscape value, ecosystem services and habitats for local wildlife. Trees can also hold historic and cultural importance by providing links to the past that create a sense of place and belonging for individuals and communities.
3.2. Trees are living, self-optimising, organisms that grow in and react to the environment in which they are located and are capable of being wounded or infected by objects or other organisms that can cause a decline in health or result in death.
3.3. Development proposals that will impact trees should consider the value and contribution made by those trees, the impacts of development activity upon their health and an assessment of future conflicts that may arise between trees and the development proposal.

Below Ground Constraints

3.4. Soils contain organic and mineral material, air and water that provides a medium essential for root growth.
3.5. The physical properties of soils including texture, porosity and bulk density can greatly impact the availability of water, nutrients and oxygen available to support the function and growth of tree roots. Protection of the soil environment in which trees grow is therefore essential to ensure tree vitality.
3.6. Tree roots provide support and anchorage and allow the uptake and transport of water, nutrients and oxygen for tree function and growth. Roots are commonly found in the upper $600-1000 \mathrm{~mm}$ of soil, however depth can vary significantly depending on species, soil and local site conditions. Typically, tree root systems comprise a network of lateral roots that provide structural support and smaller fibrous roots that function in the uptake of water, nutrients and oxygen. Protection of tree roots is vital to essential to ensure tree vitality.

Impacts of Construction \& Development

3.7. The processes of construction including the movement of machinery and equipment near trees can cause soil compaction that can starve roots of oxygen and water, resulting in tree decline or death. Increasing ground levels near trees can cause similar impacts, whilst belowground soil excavations can damage root bark or lead to root severance and impair the structural stability of trees. Further impacts include (but are not limited to) contamination of soils by toxic substances such as cement or chemicals and root desiccation due to inadequate protection during exposure.

Root Protection Areas

3.8. In accordance with BS5837, the Root Protection Area (RPA) indicates the notional minimum area of ground around a tree deemed to contain sufficient roots and rooting volume to avoid adverse physiological or structural impairment and to support future tree function, growth and health.
3.9. The RPA is calculated in accordance with Section 4.6 of BS5837 and is summarised in Appendix 2.
3.10. The RPA is plotted as a continuous circle centred on the base of the stem, however where preexisting site conditions such as the presence of built structures, changes in topography, soil type and structure or past management are likely to act as barriers, or alter normal distribution, BS5837 allows modifications to the shape of the RPA to be made based upon sound arboricultural assessment.
3.11. The default position should be that no development works occur inside RPAs, however in accordance with BS5837 when there is an overriding justification, it may be appropriate to implement specialist methods of construction or technical solutions that will reduce or eliminate the impact to roots and soil environments.
3.12. Additionally, where an area of RPA is lost, it should be demonstrated that the tree can remain viable with the area lost from encroachment compensated elsewhere contiguous with its RPA,
based on the species, age, health and condition and past management of the tree, pre-existing site conditions including the proposed operations to be undertaken and their potential impact on the tree.

Above Ground Constraints

3.13. Tree stems and crowns can restrict the availability of space on a development site that may result in conflicts between trees and the new built environment. The design and layout of a site should take into consideration the presence of tree canopies, as well as individual species characteristics and future growth requirements in order to create a harmonious relationship between trees and the new built environment.

4. PLANNING POLICY \& STATUTORY CONSIDERATIONS

Planning Policy

4.1. The National Planning Framework 'Project Ireland 2040' and National Development Plan (20212030) underpin planning policy across Ireland. These documents recognise the need to manage future growth in a planned, productive and sustainable way
4.2. At the heart of Green Infrastructure Planning is to protect, preserve and enhance national capital by:
"protecting and valuing important and vulnerable habitats, landscapes, natural heritage and green spaces".
4.3. The Bray to Dublin City Centre CBC falls within the boundary of both and Dublin City Council (DCC) and Dún Laoghaire-Rathdown County Council (DLRCC). These local planning authorities have a statutory obligation to ensure that provision is made for the protection of trees, woodlands and hedgerows under the Local Government Planning and Development Act (2000), through implementation of a Local Development Plan. The current plans for each local authority are the Dublin City Development Plan (2016-2022) and the Dún Laoghaire-Rathdown County Council Development Plan (2022-2028).
4.4. It is understood that each Development Plan provides guidance for trees in relation to proposals of development as follows:

The Dublin City Development Plan 2016-2022

Chapter 10 | Green Infrastructure, Open Space \& Recreation

Policy GI28:
"To support the implementation of the Dublin City Tree Strategy, which provides the vision for the long-term planting, protection and maintenance of trees, hedgerows and woodlands within Dublin City".

Policy GI30:
"To encourage and promote tree planting in the planning and development of urban spaces, streets, roads and infrastructure projects".

Objective GIO25:
"To protect trees in accordance with existing Tree Preservation Orders (TPOs) and, subject to resources, explore the allocation of additional TPOs for important/ special trees within the city based on their contribution to amenity or the environment".

Objective GIO27:
"To protect trees, hedgerows or groups of trees which function as wildlife corridors or 'stepping stones' in accordance with Article 10 of the EU Habitats Directive".

Objective GIO28:
"To identify opportunities for new tree planting to ensure continued regeneration of tree cover across the city, taking account of the context within which, a tree is to be planted and planting appropriate tree species for the location".

Chapter 11 | Built Heritage \& Culture

Trees in Architectural Conservation Areas
Policy CHC7:
"To protect and manage trees in Architectural Conservation Areas.
All trees which contribute to the character and appearance of the Conservation Area will be safeguarded, except where the City Council is satisfied that:

1. The tree is a threat to public safety or prevents access to people with mobility problems
2. The tree is not in keeping with the character of the Conservation Area or is part of a programme to rationalise the layout of tree planting in the area, or
3. In rare circumstances, where this is necessary to protect other specimens from disease".

Chapter 16 | Development Standards: Design, Layout, Mix of Uses and Sustainable Design

16.3.3 Tree Section:

"The successful retention of suitable trees is a benchmark of sustainable development. Trees of good quality and condition are an asset to a site and significantly increase its attractiveness and value. They add a sense of character, maturity and provide valuable screening, shelter and privacy and will often have a useful life expectancy beyond the life of new buildings. Dublin City Council will consider the protection of existing trees when granting planning permission for developments and will seek to ensure maximum retention, preservation and management of important trees
groups of trees, and hedges.
The following criteria shall be taken into account by Dublin City Council in assessing planning applications on sites where there are significant individual trees or groups/lines of trees, in order to inform decisions either to protect and integrate trees into the scheme, or to permit their removal:

Habitat/ecological value of the trees and their condition Uniqueness/rarity of species Contribution to any historical setting Significance of the trees in framing or defining views Visual and amenity contribution to streetscape.

Financial securities for trees: where trees and hedgerows are to be retained, the Council will require a developer to lodge a financial security to cover any damage caused to them either accidentally or otherwise as a result of noncompliance with agreed/specified on-site tree-protection measures. Types ofsecurities include a cash deposit, an insurance bond or such other liquid asset as may be agreed between a developer and the planning authority (see also Chapter 13). The security will be returned on completion of the development once it is established that the trees/hedgerows are in a satisfactory condition and have not been unnecessarily damaged by development works. Where damage occurs, the sum deducted from the tree security (or bond/other financial security) will be calculated in accordance with a recognised tree valuation system (e.g. Helliwell, CAVAT)".

New Trees:
"Dublin City Council will encourage and promote tree planting in the planning and design of private and public developments. Trees are considered an integral feature of the space around new buildings and adequate space (above and below ground) should be provided to allow new tree planting to be incorporated successfully. New tree planting should be planned, designed, sourced, planted and managed in accordance with 'BS 8545:2014 Trees: from nursery to independence in the landscape - Recommendations'. New planting proposals should take account of the context within which a tree is to be planted and plant appropriate tree species for the location".

16.9 Roads and Services:

"Pipes, cables, etc. under roads shall be grouped together as far as possible for easier access and less disruption, to avoid damage from tree roots and to facilitate tree planting".

The Dún Laoghaire-Rathdown County Council Development Plan (2022-2028)

Chapter 4 | Neighbourhood, People, Homes and Place

Policy Objective PHP21: Development on Institutional Lands
Policy Objective PHP37: Public Realm Design

Chapter 8 | Green Infrastructure \& Biodiversity

Policy Objective GIB1: Green Infrastructure Strategy
Policy Objective GIB18: Protection of Natural Heritage and the Environment
Policy Objective GIB22: Non- Designated Areas of Biodiversity Importance
Policy Objective GIB25: Hedgerows

Chapter 9 | Open Space, Parks and Recreation

Policy Objective OSR7: Trees, Woodland and Forestry
Policy Objective OSR8: Greenways and Blueways Network
Chapter 12 | Development Management
Various requirements and standards in connection with Policy Objectives
4.5. It is understood that the Dublin City Council Tree Strategy 2016-2020 and 'DLR TREES 20112015' are also key considerations where trees are impacted by development proposals.
4.6. The client has been provided with the relevant planning policies in relation to trees and hedges as outlined in Dublin City Development Plan (2016-2022), Dún Laoghaire-Rathdown County Council Development Plan (2022-2028) and associated tree strategies, and advised that these documents should form the basis of the design layout, ensuring that arboricultural features are considered within the context of the proposed Route.

Tree Preservation Orders \& Conservation Areas

4.7. Tree Preservation Orders (TPOs) may be made under Section 45 of the Local Government (Planning and Development) Act, 1963 and subsequent acts. Part XIII of the Planning and Development Act 2000 sets out the provisions for TPOs. A TPO can be made if it appears to the planning authority to be desirable and appropriate in the interest of amenity or the environment. A TPO can apply to a tree, trees, group of trees or woodland.
4.8. The principle effect of a TPO is to prohibit the cutting down, topping, lopping or wilful destruction of trees without the planning authority's consent. The order can also require the owner and occupier of the land subject to the order to enter into an agreement with the planning authority to ensure the proper management of the tree, trees or woodland.
4.9. A review of DCC and DLRCC websites did not allow a search for TPOs to be conducted, to ascertain if any TPOs exist along the Route.

Special Amenity Area Orders

4.10. A National Special Amenity Area is a designation for a landscape of national importance for its aesthetic/recreational value.
4.11. Planning authorities are empowered (under section 202 of the Planning and Development Act 2000), to make a Special Amenity Area Order (SAAO) for reasons of outstanding natural beauty or its special recreational value and having regard to any benefits for nature conservation. The purpose is to preserve/enhance landscape character and to prevent/limit development.
4.12. A review of the Dublin City Council Development Plan (2016-2022) and Fingal County Council

Development Plan (2017-2023) indicates there are no SAAOs on or within influencing distance of the Route.

Felling Licences

4.13. It is an offence for any person to uproot or cut down any tree unless the owner has obtained permission in the form of a felling licence from the Forest Service, with the exception of the following scenarios (under section 19 of the Forestry Act 2014):

- A tree in an urban area. (An urban area is an area that is comprised of a city, town or borough specified in Part 2 of Schedule 5and in Schedule 6 of the Local Government Act 2001, before the enactment of the Local Government Reform Act 2014 (this act
dissolved Town Councils, however, the old boundaries of these areas are still considered as urban for the purpose of the Forestry Act 2014).
- A tree within 30 metres of a building (other than a wall or temporary structure) but excluding any building built after the trees were planted.
- A tree less than 5 years of age that came about through natural regeneration and removed from a field as part of the normal maintenance of agricultural land (but not where the tree is standing in a hedgerow).
- A tree uprooted in a nursery for the purpose of transplantation.
- A tree of the willow or poplar species planted and maintained solely for fuel under a short rotation coppice.
- A tree outside a forest within 10 metres of a public road and which, in the opinion of the owner (being an opinion formed on reasonable grounds), is dangerous to persons using the public road on account of its age or condition.
- A tree outside a forest, the removal of which is specified in a grant of planning permission, providing it was indicated on the lodged plans as being planned for removal as part of the application
- A tree outside a forest of the hawthorn or blackthorn species growing in a hedge.
- A tree outside a forest in a hedgerow and felled for the purposes of its trimming the hedge providing that the tree does not exceed 20 centimetres diameter at 1.3 metres above ground level.
- Agricultural holdings can fell a limited small number of trees not exceeding 3 cubic metres.
- The maximum number of trees permitted to be felled under that exemption per year is 4 trees (12 cubic metres)
- Outside a forest, apple, pear, plum, or damson species are exempt from the need for a felling license.

Wildlife
4.14. The cutting or felling of trees is prohibited during the period 1st April to 31st August every year with limited exceptions under the Wildlife Acts 1976-2008.

5. ARBORICULTURAL IMPACT ASSESSMENT

Development Proposal

5.1. The development proposal is for the construction of a network of bus priority and cycling lanes and all associated site works along the Bray to Dublin City Centre CBC.

Design Principles

5.2. The development proposal submitted as part of this application has been directly and indirectly influenced by trees already on the site.
5.3. The default position has been to avoid works within the RPA of retained trees, however where this has not been possible a hierarchy of mitigation has been applied as illustrated in Figure 2.

Figure 2. Trees \& Development Mitigation Hierarchy (John Morris Arboricultural Consultancy, 2019).

Tree removals and pruning

5.4. Tree removals and pruning have been limited to that which is necessary and unavoidable to allow the development proposal to be implemented, with consideration given to species attributes, the tolerance of individual trees to disturbance, and to the presence of surrounding trees and features of the site which may have an influence on retained trees.
5.5. Pruning of trees may be required for reasons of good arboricultural practice or management to promote tree health and longevity, to remove hazards for reasons of health and safety, or to limit the impacts of the development proposal upon trees where incursions into RPAs are unavoidable.
5.6. The proposal will require the removal of 359 individual trees, 41 groups or parts of tree groups and ten hedges or parts of hedges.
5.7. A summary of removals by their BS5837 retention category can be found in Table 2.

Table 2. Summary of tree removals by quality.

	Category A	Category B	Category C	Total
Trees	29	121	209	$\mathbf{3 5 9}$
Groups	1	14	26	$\mathbf{4 1}$
Hedges	0	0	10	$\mathbf{1 0}$
Total	$\mathbf{3 0}$	$\mathbf{1 3 5}$	$\mathbf{2 4 5}$	$\mathbf{4 1 0}$

5.8. Individual removals by their BS5837 retention category can be found in Table 3.

Table 3. Individual removals by quality.

	Category A	Category B	Category C
Tree, Group or Hedge No.	T0068, G0088, T0104, T0122, T0123, T0135, T0225, T0226, T0251, T0252, T0253, T0257, T0264, T0406, T0454, T0474, T1000, T1301, T1513, T1634, T1636, T1642, T1644, T1645, T1649, T1652, T1654, T1657, T1658, T1659	```T0030, T0041, T0067, T0069, G0070, T0074, T0077, T0078, G0090, T0101, T0103, T0105, T0106, T0108, T0109, G0121, G0132, T0224, T0227, T0231, G0234, T0237, T0254, G0258, T0259, T0260, T0261, T0263, T0399, T0400, T0401, T0408, T0467, T0468, T0469, T0470, T0471, T0472, T0473, G0481, G0568, G0667, G0762, G0775, G0776, G0859, T0866, T0906, T0907, T0908, T0909, T0919, T0920, T0924, G0959, T0977, T0978, T0979, T0980, T0981, T1018, T1046, T1115, T1116, T1117, T1118, T1224, T1246, T1263, T1264, T1268, T1270, T1280, T1283, T1285, T1287, T1288, T1292, T1295, T1302, T1334, T1336, T1351, T1352, T1353, T1354, T1355, T1256, T1363, T1364, T1365, T1367, T1372,```	$\begin{aligned} & \hline \text { T0002, T0003, T0004, T0005, } \\ & \text { T0006, T0008, T0009, T0018, } \\ & \text { T0019, G0026, T0027, T0028, } \\ & \text { T0029, T0031, T0032, T0034, } \\ & \text { H0037, T0040, H0042, } \\ & \text { T0052, T0053, G0073, } \\ & \text { G0075, G0079, T0102, } \\ & \text { T0107, T0125, T0126, T0127, } \\ & \text { G0128, T0130, T0199, T0201, } \\ & \text { T0202, T0205, T0209, T0210, } \\ & \text { T0228, G0229, T0238, T0241, } \\ & \text { T0242, T0243, T0248, T0249, } \\ & \text { T0262, G0265, G0268, } \\ & \text { T0390, H0393, H0397, } \\ & \text { G0398, G0402, G0407, } \\ & \text { H0409, H0440, T0441, } \\ & \text { T0442, T0449, T0475, T0478, } \\ & \text { H0479, T0480, H0498, } \\ & \text { H0499, H0569, T0606, } \\ & \text { T0607, T0608, T0649, T0650, } \\ & \text { T0651, G0730, T0755, T0759, } \\ & \text { T0760, G0766, G0769, } \\ & \text { G0773, G0774, T0782, } \\ & \text { G0785, G0845, T0905, } \\ & \text { T0928, T0929, T0971, T0972, } \\ & \text { T0973, T0974, T1107, T1225, } \\ & \text { G1239, T1240, T1248, T1249, } \\ & \text { T1265, T1266, T1267, T1269, } \\ & \text { T1271, T1272, T1273, T1274, } \\ & \text { T1275, T1276, T1277, T1278, } \\ & \text { T1279, T1282, T1284, T1286, } \end{aligned}$

		T1375, T1376, T1377, T1378, T1379, T1380, T1381, T1398, T1401, T1402, T1415, T1424, T1425, T1427, T1428, T1437, T1443, T1444, T1445, T1447, T1452, T1457, T1458, T1459, T1461, T1503, T1504, T1508, T1509, T1515, T1594, T1637, T1639, T1640, T1641, T1643, T1647, T1648, T1653, T1656, T1660, T1665	John Morris Arbori, T1289, T1290, G1291, T1293, G1294, T1296, T1297, T1298, T1299, T1300, T1303, T1304, T1305, T1306, T1307, G1308, T1309, T1310, T1313, T1314, T1315, T1316, T1318, T1319, T1320, T1321, T1322, T1323, T1324, T1325, T1326, T1327, T1328, T1329, T1333, T1335, G1337, G1340, T1349, T1350, T1357, T1358, T1359, T1360, T1361, T1362, T1366, T1368, T1369, T1370, T1371, T1373, T1374, T1382, T1383, T1400, T1406, T1410, T1411, T1412, T1413, T1414, T1416, T1426, T1429, T1430, T1431, T1432, T1433, T1434, T1435, T1436, T1438, T1439, T1440, T1441, T1442, T1446, T1448, T1449, T1450, T1451, T1453, T1454, T1455, T1456, T1474, T1475, T1476, T1477, T1478, T1483, T1486, T1487, T1490, T1491, T1492, T1492, T1494, T1499, G1500, T1501, T1506, T1507, T1505, T1510, T1511, T1512, T1514, T1527, G1579, T1583, T1589, T1590, T1592, T1593, T1594, T1597, T1598, T1599, T1602, T1604, T1631, T1632, T1633, T1635, T1638, T1650, T1655, T1662, T1663, T1664, T1670,
Total	30	135	245

5.9. A chart that illustrates the age class of removals can be found in Figure 3.
5.10. A total of 41 trees are recommended for removal and replacement irrespective of the proposed development, due to severe physiological or structural decline that means they cannot realistically be retained in the context of current land use for longer than 10 years, or due to a high likelihood of failure that poses an unacceptable risk to persons to property.
5.11. Those trees to be removed are illustrated on the Preliminary Design Tree Removal Plan, attached to this report, by a continuous red canopy line.
5.12. All tree works are outlined in the Tree Schedule attached to this report and should be
undertaken by a qualified and insured contractor in accordance with BS3998:2010 Tree Works - Recommendations.

Figure 3. Summary of tree removals by age class.

Incursions within RPAs

5.13. There is a requirement for new cycle lanes and footpaths to be constructed within the RPA of retained trees. To protect roots and soil environments, it is proposed to utilise 'No-dig' above ground methods of construction in the form of three-dimensional cellular confinement systems, or by the use of specialist construction methods such as screw piles, to be specified by the project structural engineer. These methods of construction allow new surfaces or structures to be laid upon the existing ground level, preventing the need for standard subbase excavations and/or foundations, limiting soil compaction and allowing the filtration of oxygen and water to roots below, to ensure trees remain in good physiological health and structural condition.
5.14. There is also a requirement for upgrading of existing cycle lane and footpath hard surfaces within the RPA of retained trees.
5.15. The impact of the development proposal and recommendations to reduce that impact are provided the Tree Schedule attached to this report.
5.16. Provision of guidance in accordance with industry best practice for working within RPAs including the removal of existing hard surfaces, upgrading existing surfaces, the use of threedimensional cellular confinement systems, pollution control, installation of services and utilities and landscaping works to ensure that retained trees are protected before, during and after construction are provided in the Arboricultural Method Statements in Chapter 6 of this report.

Mitigation \& Improvements

5.17. The aim has been to include those arboricultural features that are capable of providing a significant and substantial future contribution in terms of their amenity, landscape and ecological value, including those that contribute to the cultural importance and character of local areas.
5.18. In certain areas there have been unavoidable tree losses due to road widening works, which are understood to be an essential requirement of the proposal.
5.19. To mitigate the removal of arboricultural features, it is understood that a landscape plan submitted as part of the application will propose a diverse mix of new trees and vegetation along the $C B C$ to function in harmony with the new proposal.
5.20. This new planting should include a varied age and mix of tree species that are chosen with consideration to local site and environmental conditions, native environment, future use of the site, provision of ecosystem services and contribution that can be made to local communities. The aim should be to plant the 'right tree in the right place' to create a tree population that is both functional and resilient.
5.21. Where it is proposed to create new green space, or where opportunities exist for new planting, consideration should also be given to the provision of succession planting to ensure continuous canopy cover in the local landscape, especially where there is an ageing tree population with little or no sign of recent tree planting.
5.22. The identification of category U trees (those that have a useful life expectancy of less than 10 years, or that are unsuitable for retention because they pose a risk of failure and injury to persons or damage to property) also provides an opportunity to offer replacement planting to enhance and improve the quality of trees along the $C B C$.
6. ARBORICULTURAL METHOD STATEMENTS

Purpose
6.1. The purpose of this statement is to provide a system of working to ensure retained trees are protected at all times during construction. It should be read in conjunction with the Tree Impact \& Protection Plan (TIPP) attached to this report.
6.2. A copy of this report must be made permanently available for the duration of the development. It can be:

- Included in tender documents to identify and quantify tree protection and management requirements;
- Used to plan timing of site operations to minimise the impact upon trees, and;
- Referenced on site for practical guidance on how to protect trees.

Arboricultural Method Statements

6.3. Protection measures and methods of working that are required to ensure the protection of retained trees during construction, along with details of where further information and
illustrative diagrams can be found is provided in Table 2.
6.4. The compliance of arboricultural method statements is recommended as a condition of planning and is necessary to ensure the protection and vitality of retained trees.

Project Arboriculturist
6.5. Due to the nature and extent of works required in proximity to existing trees, it is recommended that a project arboriculturist is appointed for the duration of construction works, to attend site a periodic intervals during keys stages of construction, especially when works are being undertaken that will have a direct impact on trees.

Pre Commencement Meeting
6.6. A pre-commencement meeting should be held prior to commencement of any demolition or construction works on site. The pre-commencement meeting may require the attendance of:

- The Main Works Contractor;
- Landscape Architect;
- Structural/Civil Engineer;
- Project Arboriculturist; and
- Any other parties as required.
6.7. The purpose of this meeting should be to agree the details of the tree protection measures and ensure that all aspects of tree protection are understood. The project arboriculturist and main works contractor will agree and mark the location of the tree protective fencing and temporary ground protection and any other specific tree protection measures, as required.

Monitoring

6.8. Once works commence upon the site the role of the project arboriculturists role will switch to monitoring compliance with arboricultural planning conditions, provision of advice in relation to tree related matters and supervision of sensitive works that may impact upon retained trees.

Key Responsibilities

1.3. It is the responsibility of the main contractor to ensure that all site personnel fully understand the protection measures on the site, that tree protection measures are adhered to at all times, and that the project arboriculturist is contacted if there are any issues related to trees.

Tree Protective Fencing

1.1. A protective fence will be erected around retained trees, prior to the commencement of materials or machinery being brought onto site, removal of soil or any form of construction. The area within this fencing will form the construction exclusion zone (CEZ) and it will be afforded protection at all times. No works will be undertaken within this zone that causes compaction to the soil, severance of tree roots or damage to tree canopies.
6.9. The fence is to be sited in accordance with the Construction Stage Tree Protection Plan.
6.10. Details of the minimum distance for fencing from trees can be found in the Tree Schedule
attached to this report.
6.11. The precise form of fencing can vary provided it is fit for purpose and prevents damaging activities within the CEZ. For a proposal of this nature, a number of fencing/protection solutions will be required including the Heras 151 system of fencing, timber boards and hessian sacking wrapped in chestnut cleft pale.
6.12. Details of the various types of fencing is provided in Appendix 2.
6.13. The fence will have signs attached to it stating that it defines a CEZ and that no works are permitted beyond it.
6.14. An example of a tree protection sign is provided in Appendix 3.
6.15. The protective fencing may only be removed following completion of all construction works.
6.16. The following principles will be adopted by site personnel within the CEZ during construction, to ensure protection of retained trees:

- No level changes.
- No excavations.
- No fires.
- No use of herbicides.
- No storage of materials, machinery or access for construction workers.
6.17. For heavy machinery with a gross weight of up to 3.5 tonne, interlinking aluminium or composite track with sufficient load bearing capacity should be laid over a minimum layer of 200 mm deep woodchip, with a geotextile membrane beneath.
6.18. An example of temporary ground protection measures can be found in Appendix 4.
6.19. Upon completion of construction works, the temporary ground protective measures should be removed working backwards from on top of the system. This will need to be done carefully to ensure that there is no excavation or compaction of the original surface or change in ground levels.
6.20. Once this material has been removed vehicular access to this part of the site will not be permitted.
6.21. Temporary protective surfaces should be specified by the project engineer, as the requirement for each will depend on the load bearing capacity of any construction activity or storage purposes required.

Permanent Ground Protection
6.22. Where permanent hard surfaces are required within the RPA, there must be no excavation into the soil, either through the lowering of levels and/or scraping, other than the removal of turf or other surface vegetation using hand tools only.
6.23. A 'No-Dig' solution should be implemented in accordance with industry best practice and in particular with reference to Arboricultural Practice Note 12 (APN12) which provides details of the 'No-Dig' method of construction. The area directly beneath the finished hard surface and
on top of the RPA should be protected by the installation of a three-dimensional cellular confinement system, or a suitable alternative solution (e.g. pile and beam, screw piles or other root bridging technique) as specified by the project structural engineer.
6.24. The suitability and type of permanent ground protection required will depend on the existing properties and load bearing capacity of the soil, and the future use and load bearing capacity requirements of the site and should therefore be specified by the project structural engineer.

Three-Dimensional Cellular Confinement Systems

6.25. This is a load bearing system which protects roots from the effects of compaction from regular vehicular, cycle or pedestrian movement. A range of products are offered by various manufacturers but whatever system is used, the end result must be that the underlying soil or rooting environment remains undisturbed and retains the capacity to support existing and new root growth.
6.26. The locations where a three-dimensional confinement systems and other protection measures are required, will be illustrated on the Construction Stage Tree Protection Plan.
6.27. Details of three-dimensional cellular confinement system and general guidance on its installation can be found in Appendix 5. It will be the responsibility of the contractor to ensure that whatever system is used, it is installed in accordance with the latest guidelines provided by the relevant manufacturer.

Demolition of Built Structures

6.28. To ensure that the canopy, stem, roots and surrounding soil environments are adequately protected during the demolition of the built structures, the following methodology should be employed.
6.29. Tree protective fencing shall be removed on a temporary basis to enable demolition but should be reinstated immediately upon completion of works.
6.30. There shall be no machinery, tools or equipment stored within any RPA.
6.31. All demolition works within RPAs must be undertaken using hand tools only.
6.32. There must be no stone or rubble stored within any RPA, either during or after demolition works are complete, to avoid soil compaction and subsequent impairment to the physiological function of roots.
6.33. Demolition must be undertaken carefully using a top-down approach and by working away from the tree to avoid any damage to tree canopies, stems and bark.
6.34. Prior to backfilling, roots must be surrounded with topsoil or sharp sand before the excavated earth is replaced. The soil must be free of contaminates and any foreign objects that may be potentially harmful to roots.
6.35. Tree protective fencing must be reinstated immediately upon completion of works, as illustrated on the TIPP.

Task	Details	Timing \& Importance	Further Details
Arboricultural Supervision Programme	Pre-commencement meeting to determine level of arboricultural supervision and monitoring required. Monitoring and supervision may be required by project arboriculturist at specific locations depending on nature and extent of works.	Preconstruction	$\begin{aligned} & \text { Page - } 22 \text { \& } \\ & 23 \end{aligned}$
Tree Removals \& Pruning	Undertake tree works (as identified in the Tree Schedule and Tree Impact Plan) in accordance with BS3998:2010 Tree Works Recommendations) to facilitate works, or for reasons of health and safety.	Preconstruction	Tree Schedule (attached)
Transplanting Trees	Apply methods to lift, store and plant trees for translocation. Those trees identified for translocation are illustrated on the Tree Schedule and Tree Impact \& Protection Plan.	Pre and Postconstruction	Page - 29
Tree Protective Fencing \& Barriers	Erect protective fencing and barriers, e.g. Heras $151 \mathrm{f} / \mathrm{BS}$ Scaffold / Chestnut pale / Plastic mesh (to be illustrated on Construction Stage Tree Protection Plan) to form Construction Exclusion Zones and protect retained tree rooting environments, stems and canopies. To remain in situ for the duration of construction.	Preconstruction	$\begin{aligned} & \text { Page }-23 \& \\ & 24 \\ & \text { Appendix }-3 \\ & \& 4 \\ & \hline \end{aligned}$
Pollution Control	Use ground protection for mixing stations and storage of materials / chemicals / toxic substances near trees to prevent soil contamination.	Preconstruction	Page-24
Temporary Ground Protection	Install temporary ground protection, e.g. TrakMat / DuraDeck / Raised Scaffold Board / Scaffold board on woodchip (to be illustrated on Construction Stage Tree Protection Plan) to protect rooting environments depending on nature of work and load bearing capacity requirements. To be specified by project engineer and remain in situ for the duration of construction.	Preconstruction	$\begin{aligned} & \text { Page - } 24 \& \\ & 25 \\ & \text { Appendix - } 5 \\ & \hline \end{aligned}$
Permanent Ground Protection	Install permanent ground protection, e.g. Cellweb / Infraweb / Pile and beam / Screw piles (to be illustrated on Construction Stage Tree Protection Plan) as specified by project structural engineer.	Construction	Page-25 Appendix-6 \& 7
Excavations \& Removal of Existing Hard Surfaces	Compliance with methodology for excavations and removal of hard surfaces (e.g. by hand or using specialist equipment such Air Spades / Soil Picks) to prevent damage to tree roots and soil environments.	Construction	Page-27
Installing New \& Upgrading Existing Surfaces	Apply suitable methods for installation of new and upgrading of existing surfaces within RPAs depending on site location and nature of works, in accordance with method statement and as per project plan specifications.	Construction	Page - 28
Installation of Service Routes	Install services using appropriate technique in accordance with NJUG10 Vol 4, e.g. Trenchless / Broken Trench / Continuous Trench using Air Spade / Thrust Boring, as required to protect tree roots and soil environments.	Construction	$\begin{aligned} & \text { Page - } 26 \text { \& } \\ & 27 \end{aligned}$
Soft Landscaping	Implement landscaping requirements using appropriate methods, tools and machinery to protect tree roots and soil environments.	Postconstruction	Page - 27

Installation of Lighting Columns / Railings / Fences

6.36. The erection of a new posts or lighting columns will require 'hand-digging' in the location where any foundations or posts are required within RPAs, to prevent damage to tree roots.
6.37. Any soil removal during excavations must be undertaken with care to minimise root disturbance and avoid any damage to root bark.
6.38. Exposed roots that are to be removed should be cut cleanly with a sharp saw or secateurs 1020 mm behind the final face of the excavation.
6.39. Roots greater than 25 mm diameter should only be cut in exceptional circumstances and following approval by the project arboriculturist.
6.40. Fibrous clumps of roots must be retained where possible, with any exposed roots protected from desiccation by covering them with a damp hessian sack or damp sharp sand (builders' sand must not be used).
6.41. Prior to backfilling, roots must be surrounded with topsoil or sharp sand before the excavated earth is replaced. The soil must be free of contaminates and any foreign objects that may be potentially harmful to roots.

Installation of Services

6.42. All services and utilities will be installed within existing service routes and where possible outside of RPAs.
6.43. Where installation of utilities or services is required within RPAs, working practices will be adopted in accordance with the National Joint Utilities (NJUG) 10, Vol 4, Issue 2, 2007 'Guidelines for the Planning, Installation and Maintenance of Utility Apparatus in Proximity to Trees'.
6.44. In accordance with 4.1.3 of NJUG 10 2007, acceptable techniques in order of preference include:
a) Trenchless; b) Broken Trench; and c) Continuous Trench. Trenchless methods involve the use of thrust boring machinery, whilst broken and continuous trench methods require that excavations within RPAs are carried out using hand tools only (for example Air Spade/Soil Pick).
6.45. For a proposal of this nature, broken or continuous trench methods are the most appropriate and should be employed as per NJUG 10, to prevent any damage to tree roots or disruption to soil rooting environments.

Soft Landscaping

6.46. To avoid damage to existing tree roots and prevent soil compact, any machinery used to remove the existing surface and ground vegetation for purposes of soft landscaping (e.g. seeding new lawns or laying turf) should be sited outside of RPAs. If this is not possible, hand tools must be used.
6.47. The removal of the surface layer within RPAs must not exceed 50 mm , to prevent exposure and damage of tree roots beneath.
6.48. Soft landscaping works must not involve raising or lowering of the existing ground level within
any RPA as this can starve roots of oxygen and cause irreversible physiological damage to trees.
6.49. The use of rotavators within RPAs is prohibited.
6.50. Any level changes outside RPAs must be graded to marry existing soil levels within RPAs.

Excavations and Removal of Existing Surfaces

6.51. All excavation must be carried out carefully using spades, forks and trowels, taking care not to damage the bark and wood of any roots. Specialist tools for removing soil around roots using compressed air such as an Air Spade/Soil Pick may be an appropriate alternative to hand digging, if available.
6.52. All soil removal must be undertaken with care to minimise the disturbance of roots beyond the immediate area of excavation. Where possible, flexible clumps of small roots, including fibrous roots, should be retained if they can be displaced temporarily or permanently beyond the excavation without damage.
6.53. If digging by hand, a fork should be used to loosen the soil and help locate any substantial roots. Once the roots have been located the trowel should be used to clear the soil away from them without damaging the bark. Exposed roots that are to be removed should be cut cleanly with a sharp saw or secateurs $100-200 \mathrm{~mm}$ behind the final face of the excavation.
6.54. Roots temporarily exposed must be protected from direct sunlight, drying out and extreme temperatures by appropriate covering. Roots greater than 25 mm in diameter should only be cut in exceptional circumstances. Roots greater than 100 mm in diameter should only be cut after consultation with the project arboriculturist.

Upgrading Existing Surfaces
6.55. Where upgrading of existing hard surfaces is required, the preferred option will be to leave the surface in place and install the new surface specification on top.
6.56. If the retained surface is impermeable, it may be appropriate to remove or puncture sections to create a more favourable environment for roots beneath, before the new surface is laid, through consultation with the project arboriculturist.
6.57. Where the existing surface is to be removed or upgraded, the surface layer should be excavated down the existing subbase and the new surface specification installed on top, to prevent any damage to roots beneath.
6.58. It is recommended that where possible, new and upgraded hard surfaces should be porous (e.g. permeable brick paving, porous resin bound aggregate or tarmac) to allow the flow or water and oxygen to roots. Wet concrete should only be poured if an impermeable geotextile fabric has first been installed to prevent soil contamination from toxic leachate.
6.59. New surfaces and upgraded surfaces should be set back from the base of stems by a minimum of 50 mm to allow space for future growth and minimise the risk of distortion with new surface.

Transplanting Trees

6.60. The following procedures should be adopted to ensure trees that are transplanted trees remain
in good health and promote chances of survival in accordance with BS 4043:1989 Transplanting Root Ball Trees.
6.61. Trees that have been identified as suitable for transplantation may require a crown or root pruning works to reduce transplant shock, and therefore increase their chances of successful establishment in their new environment. The following practices should be applied to reduce transplant shock and increase chances of survival:

- Excavations to remove existing hard surfaces from around street trees must be carried out carefully to avoid damaging the bark of tree roots.
- Tools to break up the existing hard surface around trees may include hand tools such as spades, forks, trowels, a pneumatic breaker or specialist air spade/soil pick.
- Any roots that are to be removed should be cut cleanly with a sharp saw or secateurs.
- Fibrous roots and those greater than 25 mm diameter should be retained where possible, with soil intact.
- Roots greater 25 mm diameter should only be cut in exceptional circumstances.
- Roots temporarily exposed must be protected from direct sunlight, desiccation and extreme temperatures by covering in a damp hessian sack or similar material.
- Transportation of trees must be undertaken carefully to avoid damage to the root ball, stem or crown.
- Upon planting, soil should be broken up to allow roots to freely migrate into the new surrounding soil.
- Translocation can cause severe stress due to root loss and newly planted trees should therefore be watered sufficiently until firmly established.
- It is recommended that trees are translocation during the first available dormant season, to promote the greatest chance of survival.
- Future maintenance requirements should be undertaken in accordance with the landscape architects' specifications.

7. ABOUT THE AUTHOR \& LIMITATIONS

Authors Qualifications \& Experience

7.1. This report has been written by John Morris, Director and Principal Arboricultural Consultant at John Morris Arboricultural Consultancy Ltd. John has a First Class BSc (Hons) in Housing (Ulster University) and a Post Graduate Diploma (NQF Level 9) in Arboriculture \& Urban Forestry (Myerscough College \& University of Central Lancashire). John has worked in the housing, development and arboricultural sectors combined for over 15 years and regularly undertakes continuous professional development (CPD) in all areas of arboriculture and wider business administration. John is a Professional member of the Arboricultural Association (AA), Associate member of the Institute of Chartered Foresters (ICF) and Chartered member of the Chartered Institute of Housing (CIH).

Limitations

7.2. This report is for planning purposes and is not a detailed assessment of the health and condition of trees, however where defects have been identified works have been recommended to ensure site safety.
7.3. This report does not take responsibility for the effects of extreme weather conditions, vandalism, accidents or any works to trees that occur without the authors knowledge, or that are not recommended within this report.
7.4. Tools used during the assessment have been limited to a sounding mallet, probe or binoculars. No invasive or diagnostic equipment has been used, nor have any aerial inspections, belowground root investigations, or soil, leaf or root samples been taken for further testing or analysis.
7.5. Trees were assessed during a series of site visits conducted between Friday 17th July and Thursday 30th August 2020, Monday 30th November and Tuesday 1st December 2020, and Monday $29^{\text {th }}$ November and Tuesday $30^{\text {th }}$ November 2021.
7.6. The observations within this report will remain valid for two years from the date of inspection.
7.7. The location of trees places reliance on the accuracy of the topographical survey unless otherwise caveated within the report.
7.8. All works recommendation as a result of the survey should be undertaken by a suitably qualified
7.9. and insured arborist in accordance with BS3998:2020 Tree Works - Recommendations to prevent any structural or physiological impairment to trees.

Appendices

Appendix 1: Tree Survey Criteria (BS5837:2012)

The assessment of the trees has been carried out in accordance with the guidance provided in Annexe C of BS5837, which requires that any tree on or influencing distance of the site with a stem diameter of over 75 mm at 1.5 m above ground level be recorded.

Stem diameter measurements were taken using a girthing tape or Biltmore stick, and in accordance with Annexe D of BS5837.

Height, crown spread, and canopy clearance measurements are recorded in accordance with the measurement convention detailed in paragraph 4.4.2.6 of BS5837.

The trees are categorised in an order defined in Table 1 of BS5837, a copy of which can be seen below in Figure 1, but which can be summarised as:

- Category A Trees of high quality and value in such a condition as to be able to make a substantial contribution for a minimum of 40 years.
- Category B Trees of moderate quality and value in such a condition as to make a significant contribution for a minimum 20 years.
- Category C Trees of low quality and value currently in adequate condition and able to remain until new planting can be established with a minimum useful life expectancy of 10 years, and young trees with a stem diameter less than 150 mm .
- Category U Trees in poor structural condition or physiological decline that cannot be realistically retained in the context of current land use for more than 10 years.

Further subcategories 1-3 indicate the area(s) in which a tree or group retention value lies.

- Mainly arboricultural.
- Mainly landscape.
- Mainly cultural, including conservation.
Table 1 Cascade chart for tree quality assessment

Category and definition	Criteria (including subcategories where appropriate)			Identification on plan
Trees unsuitable for retention (see Note)				
Category U Those in such a condition that they cannot realistically be retained as living trees in the context of the current land use for longer than	- Trees that have a serious, irremediable, structural defect, such that their early loss is expected due to collapse, including those that will become unviable after removal of other category U trees (e.g. where, for whatever reason, the loss of companion shelter cannot be mitigated by pruning)			See Table 2
	NOTE Category U trees can have existing or potential conservation value which it might be desirable to preserve; see 4.5.7.			
	1 Mainly arboricultural qualities	2 Mainly landscape qualities	3 Mainly cultural values, including conservation	
Trees to be considered for retention				
Category A Trees of high quality with an estimated remaining life expectancy of at least 40 years	Trees that are particularly good examples of their species, especially if rare or unusual; or those that are essential components of groups or formal or semi-formal arboricultural features (e.g. the dominant and/or principal trees within an avenue)	Trees, groups or woodlands of particular visual importance as arboricultural and/or landscape features	Trees, groups or woodlands of significant conservation, historical, commemorative or other value (e.g. veteran trees or wood-pasture)	See Table 2
Category B Trees of moderate quality with an estimated remaining life expectancy of at least 20 years	Trees that might be included in category A, but are downgraded because of impaired condition (e.g. presence of significant though remediable defects, including unsympathetic past management and storm damage), such that they are unlikely to be suitable for retention for beyond 40 years; or trees lacking the special quality necessary to merit the category A designation	Trees present in numbers, usually growing as groups or woodlands, such that they attract a higher collective rating than they might as individuals; or trees occurring as collectives but situated so as to make little visual contribution to the wider locality	Trees with material conservation or other cultural value	See Table 2
Category C Trees of low quality with an estimated remaining life expectancy of at least 10 years, or young trees with a stem diameter below 150 mm	Unremarkable trees of very limited merit or such impaired condition that they do not qualify in higher categories	Trees present in groups or woodlands, but without this conferring on them significantly greater collective landscape value; and/or trees offering low or only temporary/transient landscape benefits	Trees with no material conservation or other cultural value	See Table 2

Figure 1. BS5837 Assessment Criteria \& Cascade Chart (Source: BS5837:2012 Trees in relation to demolition, design and construction - Recommendations).

Circle Radius

The circle radius has been calculated by obtaining the stem diameter (measured at 1.5 m above the ground) in millimetres and multiplying it by 12 . Where the tree is multi-stemmed, an average stem diameter is calculated by the following formula specified in section 4.6 .1 (a) \& (b) of BS5837.

For trees with two to five stems, the combined stem diameter should be calculated as follows:

$$
\sqrt{(\text { stem diameter } 1)^{2}+(\text { stem diameter } 2)^{2} \ldots+(\text { stem diameter } 5)^{2}}
$$

For trees with more than five stems (not illustrated in Annex C), the combined stem diameter should be calculated as follows:
$\sqrt{(\text { mean stem diameter })^{2} \times \text { number of stems }}$

This total is then divided by 1000 to provide a circle radius in metres.

RPA Areas

The RPA has been assessed according to the recommendations set out in section 4.6 of BS5837. It is calculated by multiplying the radius squared by $3.142(\pi)$.

Length of sides of a square

Section 5.5.3 of BS5837 recommends that the ground protection and barriers should be shown as a polygon surrounding the stem of the tree. With a circle, the distance from the edge of the circle to the centre will remain constant, but with a square, the distance from the centre of the tree to the sides of the square is less than the distance to the corner of the square. The area of the square must remain the same as the area of the circle. In order to ensure that it is
the case, the length of side of the square is calculated at the square root of the RPA area.

Minimum barrier distance

This is the closest point that a side of the square can be to the centre of the tree.

Figure 1. Illustration of area calculations and minimum barrier distances

Figure 1 illustrates the differences between a square and a circle in area. Where the distance from the centre of the tree to the corner of the square is greater than the radius of the circle (r), but the distance from the centre of the tree to the side of the square is greater than the radius of the circle (r), the total area will remain the same. The minimum barrier distance from
the tree is calculated by taking the length of the side and dividing it by two.

Clarification note on the RPA radius

The RPA radius is not the automatic minimum distance of the tree protection. It is a notional figure for use as a means of calculating the actual area of the RPA. BS5837 clarifies this under Section 3.7 Root Protection Area (RPA) - layout design tool indicating the minimum area around a tree deemed to contain sufficient roots and rooting volume to maintain the trees viability, and where the protection of the roots and soil structure is treated as a priority.

Figure 2 Default specification for protective barrier

Key
1 Standard scaffold poles
2 Heavy gauge 2 m tall galvanized tube and welded mesh infill panels
3 Panels secured to uprights and cross-members with wire ties
4 Ground level
5 Uprights driven into the ground until secure (minimum depth 0.6 m)
6 Standard scaffold clamps

Preparation

During the preparation stages it is important to consider any activity that may cause damage to tree roots or soils beneath, resulting in compaction and therefore an increase in bulk density that could result in oxygen depletion and reduction in soil water availability. The clearance of vegetation could also result in direct damage to rook bark or severance of roots that are vital for tree survival.

The location and movement of site traffic should therefore give due consideration to ensure roots and soils do not undergo any form or compaction, or excess excavation of earth to remove any surface vegetation. Further risk factors include the creation of an imperviable surface, causing a rise in the water table due to construction, increasing ground levels and contamination of sub soils.

When looking at site conditions and future use requirements, the following information should be considered to enable a load bearing structure capable of supporting proposed traffic:

- Californian Bearing ratio (CBR) - Standard test method for measuring soil strength
- Soil types
- Water table
- Maximum load requirements
- Acceptable rut depth
- Reinforcement type (I.e. depth of three-dimensional cellular confinement system)
- Type and depth of engineered infill material (E.g. Clean, angular stone, usually 40 mm to 20 mm).

Excavations

The precise location and depth of roots within the soil is unpredictable and can only be established once digging has commenced. Ideally, all RPAs should be no-dig, but this is often not possible on undulating surfaces. New surfacing normally requires an evenly graded sub-base layer, which can be made up to high points with granular, permeable fills such as crushed stone or sharp sand. This subbase must not be compacted. Some limited excavation may be required to achieve this, and this is not necessarily damaging to trees if it is done carefully and no large roots are cut. The top 50 mm of soil on grass surfaces is unlikely to contain any tree roots and therefore the removal of this will not impact the tree. It may be possible to dig deeper than this depending on local conditions, but this would need to be assessed by the retained project arboriculturist.

On undulating surfaces, finished gradients/levels must be planned with sufficient flexibility so as to allow changes to occur if the excavation of high points reveals unexpected large roots. If roots are less than 25 mm in diameter, it would normally be acceptable to cut these. However, for roots over 25 mm diameter, cutting them may cause damage to the tree and further excavation may not be possible. In this case, the surrounding levels must be adjusted to take account of these high points,
by filling with suitable material. If this is not possible and it is necessary to cut larger roots, discussions should be held with the retained project arboriculturist before any final decision is made.

Installation

Generally, it is best practice to place a geotextile separation filtration layer over the prepared subgrade and overlap dry joints by 300 mm .

The three-dimensional cellular confinement system should be expanded to the full length, with panels secured in place using staking pins to anchor open the cells. Adjacent panels should be stapled together to create a continuous mattress and the structure infilled with a no fines angular granular fill (typically $4-20 \mathrm{~mm}$) within each open cell.

A treated timber edging is usually acceptable for an edge restraint, however other suitable materials may include railway sleepers or metal pins.

Surfacing Options

Generally, a variety of surface finishes can be installed including block paving, gravel, tarmac and concrete but will depend on the individual manufacturer's specification and product requirements.

The CellWeb ${ }^{\text {TM }}$ TRP cellular confinement system protects tree roots from the damaging effects of compaction and desiccation, while creating a stable, load-bearing surface for vehicular traffic.

CelWebm offers an altemative to the traditional methods of constructing roadways and building foundations that involve excavation, which can result in tree root severance and soil compaction from the passage of vehicles. Such damage car severely infuevce tree health, and in extreme cases leads to death. Cellweb ${ }^{\text {mh }}$ can be sensifively installed cose tc and under the canspies of trees whout negative effects.
Trees are valuable landscape features and a vital ervironmerkal resource. Increas ngly. contractors are being requred to ensure the health and survival of trees during and beyond the construction period. Athough this is enshrined in BS 5837: Trees in Relation to
Construction: Recommendations (2005) and Tree Preservation Order legislation, it presents several issues when mplementing construction projects near to trees:

> - Root severance caused by excivetion, leasing trees open to decay, less stable and with a dimirished capacity to utilise soil waiter and rutrients.
> - Destruction of soil structure and compaction due to the passage of heavy vehicles, restricting the flow of water and air to tree roots.
> - Need for construction access, new roadways and hard surfaces that require engineering-standard load-bearing foundations that meet building regulations.

- Need for high-performance, cost-effective driveways and roddways in the vicinity of tree roots.

Potential lass of existing tree due: o pcer constructon tachnicues.

The Cellweb" systemovercomes these issues anc helos contractors to comply with tree bealth guideines by creating a load-bearing base t)at is water-permeable, stable and durable.

With ro need for excavation, the system is quick and easy to install, reducing construction time and saving costs and making it suitable for temporary and permanent solutions.

Clynebrume Wood.
Perbestrian path in rocreational wand and th.ilt using a Gelviehth foundation which was covered with Buoflicde and then flled with wecdehif to create a porous surfice.

Product features

CellWebru comprises an expendable cellular mattress that is then filed with a clear stone sub-base and above a Treetex T300 Geotextle.

The honeycomb-Eke structure is made of robust high density polyetlylene (HOPE: that is simply stretched out and filled wth clean angular material fust like tractional roadways, the strength of the structure comes from the binding toget ner of the infill, but with Cellwebint this is achieved without compaction ane withsut reduction in permeability.
Perforated cell walls allow the ang.lar infill to bind with the contents of the adjacent cell, but with sufficient space for the movernent of water and ai- to nearby tree roots. As the infll contains no fines and the geotextie layers prevent clogeing from particles washing into the system, the structure remains permeable to water over time and protects the roots for the lifetime of the tree.

As well as being quick and easy to instal, CellWebw also dramatically cuts down the depth of sub-base required, in most cases by as much as 50%, further reducing costs. CellWeb ${ }^{\text {tW }}$ significantly reduces surface rutting, increasing the kng-term performance of the finished surface and ensuring that tree roocs remain protected from vertical loass.

CellWeb can be used as a permanent solution or alternatively the system can be used in a temporary situation. In a temporary application the system can be usoc for the requ red period of time, then removed for use on another site or recycled, thereby adding to CellWeb's green credentials.

- No excavation - Soil structure remains undisturbed: risk of root clamage minimised.
- Porous infill - Allows tree roots to conduct moisture and gas exchange.
- No compaction - No need to compact the infill to achieve a load-bearing structure.
- Lateral stability - Structure remains rigid to vertical loads.

Please call

 01455617139 or email sales@geosyn.co.uk for further information.

Tree Constraints Plan

Tree Schedule

年eterence	20.070.01																						
	30 Oh November - 2nd December 2020																						
	29th - 304t November 2021																						
	200t-21st March 2023		Age Class																				
Abreviation	Defintion							Physiological Condition					Structural Condition			Category	High value and conseration			ULLE	Sub calegory		
Stem Dia.	Siem diameeter (mm)		SM (Semi-mature)	Newly planted (fi0 y yrs old)					Noteovvout heath probiens				$\frac{\text { liad }}{\text { Fair }}$	No visibe defectis		${ }^{\text {B }}$	Moderate value and consevation			${ }_{\text {20+ }}^{40+}$		Mainyl landsa	
C.C	Crown clarance (m)		EM (Early mature)	Second tirido olite expectancy					Serious ill health or dying				$\stackrel{\text { Prair }}{\text { Poor }}$	Dangerous or no remedy		$\frac{1}{4}$	Low value and conseration			${ }^{10+}$		Mainly cultural	
LL.B.H	Lowest branch height (m)															U	Not sutitabe for reamion			${ }^{10}$			
L.B.D	Direction of lowest branch			Beyond life expectancy \& in deciline									G-Group H-Hedgerow W-Woodland				P- Tree is on private land -Tree is not on topographical survey and therore position remains indicitive \# Measurements estimated (tree is in inacessible)						
U.L.E			V/A (Veteran/Ancien	Ancient characterisits or conservation value					Sutix:														
Tree No.	Tag No.	Species	Botanical Name	$\mathrm{H}(\mathrm{m})$	$\begin{array}{\|c} \hline \text { Stem } \\ \text { Dia. } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { No of } \\ & \text { Stems } \\ & \hline \end{aligned}$	Crown Spread (m)				$\begin{aligned} & \text { c.c. } \\ & \hline \text { (m) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { L.B.H } \\ (\mathrm{m}) \\ \hline \end{gathered}$	L.B.D	Age	Physiological	Structural	Comments	Recommendations	Impact of Proposal	U.L.E	cat.	RPA (m2)	RPA Radial distance (m)
Tree No.		Species					1	E	s	w													
т0030* ${ }^{\text {P }}$		Whitebeam	Sorbus aria	8	320\#		2	3	2	3	2		North	M	Fair	Fair	Two stems from 2 m forming compact crown, c .6 m from pavement c .1 m from boundary fence.	Remove to facilitate proposal and replace as good arboricultural practice.	Removal due to road widening.	${ }^{20+}$	${ }^{81}$	48	4
то031* $^{\text {P }}$		Whitebeam	Sorbus aria	7	170\#	1	3	3	2	2	3	${ }^{3}$	South	sm	Fair	Fair	Two leaders from 3 m forming compact assymetric crown, surrounded by brick pavers in tarmac, c. 3.5 m from pavement.	$\begin{array}{\|c\|} \hline \text { Remove to facilitate } \\ \text { proposal and replace as } \\ \text { good arboricultural } \\ \text { practice. } \\ \hline \end{array}$	Removal due to road widening.	${ }^{10+}$	c1	14	2
т0032 P		Whitebeam	Sorbus aria	7	200\#	1	2	3	3	3	4	3	South	sm	Fair	Fair	Two leaders from 3 m forming compact crown, surrounded by brick pavers in tarmac, c. 3.5 m from pavement.	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Remove to facilitate } \\ \text { proposal and replace as } \\ \text { good arboriciultural } \\ \text { practice. } \\ \hline \end{array} \\ \hline \end{array}$	Removal due to road widening.	10+	c1	18	2
то033 ${ }^{\text {P }}$		Rowan	Sorbus aucuaria	7	170\#	1	3	3	3	3	2	2	East	sm	Poor	Poor	Three leaders from 2 m forming compact crown, damage causing stem girdling at 2 m , bark death, on grass c .1 .5 m from pavement, limited useful life expectancy.	Fell and replace as good arboricultural practice (<3 months).	Removal due to road widening.	<10	u	14	2
то034		Rowan	Sorbus aucuaparia	7	210\#	2	3	3	3	3	3	0	East	ем	Fair	Poor	Two stems from base forming symetric crown, on grass c. 1.5 m from pavement.	$\begin{aligned} & \text { Remove to facilitate } \\ & \text { proposal and replace as } \\ & \text { good arboricultural } \end{aligned}$ practice.	Removal due to road widening.	${ }^{10+}$	C1	18	2
нооз5* ${ }^{\text {P }}$		New Zealand Privet	Griselina litoralis	1	${ }^{\text {80\# }}$	1	1	1	1	1	1	0	South	ем	Fair	Fair	Linear boundary hedge in private garden behind brick wall.	None.	None.	${ }^{10+}$	c2	3	1
нооз6* ${ }^{\text {P }}$		New Zealand Privet	Griselina litoralis	2	${ }^{110 \#}$	1	1	1	1	1	1	0	South	ем	Fair	Fair	Linear boundary hedge in private garden behind brick wall.	None.	None.	${ }^{10+}$	c2	5	1
нооз7*		Leyland cypress	$\begin{aligned} & \text { Cupressocyparis } \\ & \text { leylandii } \end{aligned}$	3	100\#	1	1	1	1	1	1	0	South	sm	Fair	Fair	Linear boundary hedge in private garden behind brick wall.	$\begin{array}{\|c\|} \hline \text { Remove to facilitate } \\ \text { proposal and replace as } \\ \text { good arboricultural } \\ \text { practice. } \end{array}$	Removal due to road widening.	10+	c2	5	1
${ }^{60038 * *}$		Mixed Species Group	N/a	2	100\#	1	3	3	3	3	1	1	East	sm	Fair	Fair	Group comprising privet and various garden shrubs in private garden.	None.	None.	$10+$	c2	5	1
T0039* ${ }^{\text {P }}$		Yew	Taxus baccata	4	100\#	1	3	4	3	3	0	0	South	SM	Fair	Fair	Dense foliage in private garden behind brick wall.	None.	None.	10+	C1	5	1
нооа2* ${ }^{\text {P }}$		New Zealand Privet	Griselina littoralis	4	90\#	1	1	1	1	1	1	1	East	em	Fair	Fair	Boundary hedge that extends around property behind brick wall.	$\begin{array}{\|c\|} \hline \text { Remove to facilitate } \\ \text { proposal and replace as } \\ \text { good arboricultural } \\ \text { practice. } \end{array}$	Removal due to road widening.	10+	c2	5	1
T0043* ${ }^{\text {P }}$		Hornbeam	Carpinus betulus	8	160\#	1	2	2	2	2	2	2	South	SM	Fair	Fair	Single stem forming compact crown located in verge south of entrance to garage forecourt	None.	None.	$20+$	${ }^{\text {B1 }}$	10	2
To094* ${ }^{\text {P }}$		Silver birch	Betula pendula	8	140\#\#	1	2	2	2	1	1	1	North	SM	Fair	Fair	Single stem with compact crown behind stone wall.	None.	None.	$10+$	C1	10	2
T0045* P		Sycamore		9	2204	1	1	3	3	1	6	5	East	SM	Fair	Fair	Single stem with compact crown behind stone wall.	None.	None.	${ }^{10+}$	C1	${ }^{23}$	3
то046* ${ }^{\text {P }}$		Horse Chestrut	$\begin{aligned} & \text { Aesculus } \\ & \text { hippocastanum } \end{aligned}$	${ }^{17}$	5604	1	9	8	9	9	6	4	North	M	Good	Fair	Single stem forming spreading crown, behind stone wall, canopy extends to centre of road, prominent high value tree in local landscape.	None.	None.	${ }^{40+}$	A1	137	7
${ }^{60051 * ~}{ }^{*}$		Mixe S Species Group	N/a	14	280\#	1	4	4	4	4	4	2	South	ем	Fair	Fair	Mixed species group comprising ash, sycamore, alder and hazel, hawthorn and elder behind stone wall.	None.	None.	${ }^{20+}$	82	34	3
т0052*	0056	Silver birch	Betula pendula	11	240	1	3	3	3	3	1	2	South	ем	Fair	Fair	Single stem in centre of roundabout.	$\begin{array}{\|c\|} \hline \text { Remove to facilitate } \\ \text { proposal and replace as } \\ \text { good arboricultural } \\ \text { practice. } \end{array}$	Removal due to new junction.	$10+$	C1	28	3
т0053*	0057	Alder	AInus glutiosa	9	160	1	2	2	2	2	1	2	South	sm	Fair	Fair	Single stem in centre of roundabout.	$\begin{array}{\|l} \text { Remove to facilitate } \\ \text { proposal and replace as } \\ \text { good arboricultural } \\ \text { practice. } \end{array}$	Removal due to new junction.	10+	c1	10	2
60054* ${ }^{\text {P }}$		Mixed Species Group	N/a	16	360\#	1	4	4	4	4	2	2	west	M	Page ${ }_{\text {fair }}$ of 78	Fair	Mixed species group located on private land behind stone wall, prominent feature in local landscape with mature trees and dense understorey.	None.	None.	$20+$	${ }^{82}$	55	4

Reference	20.070 .01																						
Survey Dates	17.7 - 31 st A August 2020																						
	3 30t November - -2nd Deceember 2020																						
	29th - 30th November 2021																						
	2 20t-21st Narch 2023		Age Class					Physilogical ConditionGood					Structural Condition										
Abrevialion	Detinition			Newly planted (<10 y ys old)									Calegory	High value and consenation			ULL.E	Sub cal	egory				
Stem Dia.			${ }_{\text {SM (SEmi-mature) }}$	Finst thirid oflife expeocostany					netevenion may inprove health						Deiecois may require inteve		Moderiate value and consenvalion			${ }^{20+}$		Mainly landsca	
C.C	Crown learance (m)			Second third of fife expectancy									$\stackrel{\text { Fair }}{\text { Poor }}$				Low value and conseration			${ }_{1}^{10+}$		Mainly cultural	
L-B.H			M (Nature)	Full age	species									Dangerous of n oremedy		U	Not sutiable for reterition			s0			
L.B.D	Direction of lowest branch		ом (Over mature)	Beyond life expectancy 8 in decline				value															
UL.E.	Usefululife expectancy (yrs)		VIA (veteranaAnciont)	Ancient	acterisicic	or consen	ation			Suffix:			G-Group H-Hedgerow W-Woodland				P. Tree is on private land -Tree is not on topographical survey and therorere position remains indicitive \#Measurements estimated (tree is in inccessibile)						
Tree No.	Tag No.	Species	Botanical Name	$\mathrm{H}(\mathrm{m})$	($\begin{gathered}\text { Stem } \\ \text { Dia. }\end{gathered}$	$\begin{array}{\|l\|l\|} \hline \text { No of } \\ \text { Stems } \end{array}$	Crown Spread (m)				$\begin{aligned} & \text { c.c } \\ & (\mathrm{m}) \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline \text { L.B.H } \\ (\mathrm{m}) \end{array}$	L.B.D	Age	Physiological	Structural	Comments	Recommendations	Impact of Proposal	U.L.E	Cat.	RPA (m2)	RPA Radial distance (m)
							-	E	s	w										U.L.E			
т0103	0103	sycamore	$\begin{aligned} & \text { Acer } \\ & \text { pseudoplatanus } \end{aligned}$	16	930	1	5	6	4	6	10	6	South	M	Fair	Fair	Forks at 6 m forming spreading crown.	Remove to facilitate proposal and replace as good arboricultural practice.	Removal due to road widening.	$20+$	${ }^{81}$	387	11
т0104	0104	Horse Chestrut	$\begin{aligned} & \text { Aesculus } \\ & \text { hippocastanum } \end{aligned}$	17	760	1	6	6	6	6	4	9	South	M	Good	Fair	Single stem forming spreading crown from 9 m .	$\begin{array}{\|c\|} \text { Remove to facilitate } \\ \text { proposal and replace as } \\ \text { good arboricultural } \\ \text { practice. } \end{array}$	Removal due to road widening.	${ }^{40+}$	${ }^{\text {A1 }}$	254	9
т0105	0105	Horse Chestrut	$\begin{aligned} & \text { Aesculus } \\ & \text { hippocastanum } \end{aligned}$	15	580	1	5	5	4	4	2	2	North	м	Fair	Fair	Two stems from 2 m forming spreading crown.	Remove to facilitate proposal and replace as good arboricultural practice.	Removal due to road widening.	$20+$	${ }^{81}$	150	7
т0106	0106	Horse Chestrut	$\begin{aligned} & \text { Aesculus } \\ & \text { hippocastanum } \end{aligned}$	15	780	1	6	6	5	6	3	2	South	м	Fair	Fair	Single stem forming spreading crown from 4m.	Remove to facilitate proposal and replace as good arboricultural practice.	Removal due to road widening.	$20+$	${ }^{81}$	272	9
т0107	0107	Horse Chestrut	Aesculus hippocastanum	10	278	1	3	2	3	2	2	0	North	ем	Fair	Fair	Twin stem that is growing beneath neighbouring tree, self seeded with no space for future growth and development.	$\begin{array}{\|c\|} \text { Remove to facilitate } \\ \text { proposal and replace as } \\ \text { good arboricultural } \\ \text { practice. } \end{array}$	Removal due to road widening.	${ }^{10+}$	c1	${ }^{34}$	3
T0108	0108	Horse Chestrut	$\left\lvert\, \begin{aligned} & \text { Aesculus } \\ & \text { hipocastanum } \end{aligned}\right.$	15	560	1	4	5	5	5	2	6	South	M	Fair	Fair	Single stem forming spreading crown from 6 m .	$\begin{array}{\|c\|} \text { Remove to facilitate } \\ \text { proposal and replace as } \\ \text { good arboricilultural } \\ \text { practice. } \\ \hline \end{array}$	Removal due to road widening.	${ }^{20+}$	${ }^{81}$	137	7
т0109	0109	Horse Chestrut	$\begin{array}{\|l\|l\|l\|lccll} \text { hips } \\ \text { hipocastanau } \end{array}$	16	650	1	5	5	5	6	6	2	South	м	Fair	Fair	Single stem forming spreading crown from 8 m .	Remove to facilitate proposal and replace as good arboricultural practice.	Removal due to road widening.	${ }^{20+}$	${ }^{81}$	191	8
т0110	0110	Horse Chestrut	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|} \text { hippocastatam } \end{array}$	16	681	2	7	6	5	6	10	1	North	m	Fair	Fair	Single stem, extended limb at 0.5 m , forming spreading crown.	Follow relevant method statements when working within RPA.	Resurfacing within RPA.	$20+$	${ }^{81}$	206	8
T0111	0111	Horse Chestrut	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|} \text { hippocastatam } \end{array}$	8	440	3	3	3	3	3	2	0	South	ем	Fair	Fair	Multistem from base, growing from beneath neighbouring trees with little space for future growth and development.	$\begin{array}{c}\text { Follow relevant method } \\ \text { statements when } \\ \text { working within RPA. }\end{array}$	Resurfacing within RPA.	${ }^{10+}$	c1	92	5
T0112	0112	Ash	Fraxinus excelsior	17	470	1	2	2	3	2	0	0	East	M	Fair	Fair	Single clear stem with compact crown.	Follow relevant method statements when working within RPA.	Resurfacing within RPA.	${ }^{20+}$	${ }^{81}$	102	6
T0113	0113	Horse Chestrut	$\begin{array}{\|l\|l\|l\|lccll} \text { hips } \\ \text { hipocastanau } \end{array}$	16	540	1	3	3	2	2	7	8	South	M	Fair	Fair	Single stem, basal stem damage west, occluding wound forming small assymetric crown.	$\begin{array}{c}\text { Follow relevant method } \\ \text { statements when } \\ \text { working within RPA. }\end{array}$	Resurfacing within RPA.	${ }^{10+}$	c1	137	7
T0114	0114	Horse Chestrut	Aesculus hippocastanum	12	310	1	3	3	3	3	3	4	East	ем	Fair	Fair	Single stem forming compact symetric crown.	Follow relevant method statements when working within RPA.	Resurfacing within RPA.	$20+$	${ }^{1} 1$	${ }^{41}$	4
T0115	0115	Horse Chestrut	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l} \text { hippocastar } \end{array}$	17	710	1	6	5	4	6	6	2	West	M	Fair	Fair	Single stem, basal stem damage, occluding wound, forming spreading crown from 6 m .	Follow relevant method statements when working within RPA	Resurfacing within RPA.	${ }^{20+}$	${ }^{1} 1$	222	8
т0116	0116	Horse Chestrut	$\begin{aligned} & \text { Aesculus } \\ & \text { hippocastanum } \end{aligned}$	16	650	1	6	6	6	6	8	8	West	M	Fair	Fair	Single stem forming symetric spreading crown from 8 m .	Follow relevant method statements when working within RPA	Resurfacing within RPA.	${ }^{20+}$	${ }^{81}$	191	8
T0117	011	Horse Chestrut	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|} \text { hippocastam } \end{array}$	16	660	1	4	6	6	6	7	5	South	M	Page ${ }_{\text {Fair }}$ of 78	Fair	Single stem forming spreading crown from 5 m .	Follow relevant method statements when working within RPA	Resurfacing within RPA.	$20+$	${ }^{81}$	191	8

U.L.E	Useful life expectancy (yrs)	
Tree No.	Tag No.	Species

$\xrightarrow{7}$

Tree No.	Tag No.	Species	Botanical Name	H (m)	Stem	$\begin{array}{\|l\|} \hline \text { No of } \\ \text { Stems } \end{array}$	${ }^{\text {N }}$	${ }_{\text {crown }}$	pread	(m)	c.c	$\underset{\substack{\mathrm{L} . \mathrm{B} . \mathrm{H} \\(\mathrm{~m})}}{ }$	L.B.D	Age	Physiological	Structural	Comments	Recommendations	Impact of Proposal	U.L.E	Cat.	RPA (m2)	RPA Radial
T0169	0169	Sessile oak	Quercus petroea	10	230	1	4	3	4	4	2	3	West	em	Fair	Fair	Single stem forming symetric spreading crown from 3 m , on grass verge c .2 m from path.	None.	None.	$20+$	${ }^{\text {B1 }}$	23	3
T0170	0170	Sessile oak	Quercus petroea	10	210	1	3	3	4	4	2	3	South	ем	Fair	Fair	Single stem forming symetric spreading crown from 3 m , on gras verge .2 C .2 m from path.	None.	None.	${ }^{20+}$	${ }^{\text {B1 }}$	18	2
T0171	0171	Sessile oak	Quercus petroea	10	200	1	4	3	4	4	3	3	North	em	Fair	Fair	Single stem forming symetric spreading crown from 3 m , on grass verge $c .2 \mathrm{~m}$ from path.	None.	None.	$20+$	${ }^{\text {B1 }}$	18	2
T0172	0172	Sessilie oak	Quercus petroea	12	270	1	4	4	4	4	3	3	South	ем	fair	Fair	Single stem forming symmetric spreading crown from 3 m , on grass verge $c .2 m$ from path.	None.	None.	20+	${ }^{\text {B1 }}$	34	3
T0173	0173	Sessile oak	Quercus petroea	10	270	1	4	4	4	4	3	4	East	ем	Fair	Fair	Single stem forming symetric spreading crown from 3 m , on grass verge .2 m from path.	None.	None.	${ }^{20+}$	${ }^{81}$	34	3
T0174	0174	Sessile oak	Quercus petrrea	10	240	1	3	3	3	4	2	3	South	ем	Fair	Fair	Single stem forming symetric spreading crown from 3 m , on grass verge c .2 m from path.	None.	None.	${ }^{20+}$	${ }^{\text {B1 }}$	28	3
T0175*	0175	Field maple	Acer campestre	8	130	1	1	1	1	2	3	3	East	sm	Fair	Poor	Single stem forming assymetric crown shadded out by neighbouring trees.	None.	None.	${ }^{10+}$	c_{1}	7	2
T0176*	0176	Sessile oak	Quercus petroea	8	120	1	1	2	3	1	3	4	South	SM	Fair	Fair	Single stem forming compact crown from 4 m .	None.	None.	${ }^{10+}$	${ }^{1}$	7	2
т0177*	0177	Sycamore	Acer pseudoplotornus	12	390	2	3	3	3	3	4	0	South	ем	Fair	Poor	Twin stem forming spreading crown.	None.	None.	${ }^{10+}$	c1	72	5
т0178*	0178	sycamore	$\begin{array}{\|l\|l\|} \hline \text { Acer } \\ \text { pseudoplatanus } \end{array}$	11	300	1	2	2	2	4	6	2	West	ем	Fair	Fair	Two leaders from 2m forming assymetric crown.	None.	None.	${ }^{10+}$	c1	${ }^{41}$	4
т0179*	0179	Ash	Fraxinus excelsior	11	210	1	1	1	1	4	7	4	West	sm	Fair	Poor	Single leaning ivy clad stem, basal decay, hollow to 1 m , assymetric crown from 4 m .	Fell and replace as good arboricultural practice (<3 months).	None.	<10	u	18	2
т0180*	0180	Ash	Fraxinus excelsior	11	277	2	4	3	4	2	5	0	South	sm	Poor	Poor	Twin stem forming assymetric crown from 5 m , split in stem south $2-5 \mathrm{~m}$, crown dieback, large stem c. $300 \mathrm{~mm} \varnothing$ previously pruned south.	Fell and replace as good arboricultural practice (<3 months).	None.	<10	u	${ }^{34}$	3
T0181*	0181	sycamore	Acer pseudoplatanus	12	200	1	2	1	1	3	4	4	East	sm	Poor	Poor	Two leaders from 3 m forming assymetric crown, basal decay, ivy clad, severe dieback.	Fell and replace as good arboricultural practice (<3 months).	None.	<10	u	18	2
T0182*	0182	Sycamore	Acer pseudoplatanus	12	270	1	2	6	2	2	8	4	East	sm	Fair	Fair	Single stem, extended limb east, primary limbs c. $120 \mathrm{~mm} \varnothing$ previously pruned at unions, assymetric crown.	None.	None.	10+	Cl^{1}	34	3
T0183*	0183	Sycamore	$\left\lvert\, \begin{array}{\|l\|l\|} \hline \text { Acer } \\ \text { pseudoplatanus } \end{array}\right.$	11	200	1	1	1	1	3	2	5	West	sm	Fair	Poor	Single leaning ivy clas stem forming assymetric crown.	None.	None.	10+	C1	18	2
т0184*	0184	Sycamore	Acer pseudoplatanus	12	230	2	2	2	3	5	4	0	West	SM	Fair	Poor	Twin stem forming assymetric crown from 4 m .	None.	None.	${ }^{10+}$	C1	23	3
т0185*	0185	sycamore	Acer pseudoplatanus	12	724	5	6	6	3	6	5	0	South	M	Fair	Poor	Mutistem from base, ivy cla stems forming spreading crown.	Follow relevant method statements when working within RPA.	New surface within RPA.	10+	${ }^{1}$	238	9
T0186	0186	Sessile oak	Quercus petrrea	10	300	1	4	4	4	4	2	2	South	ем	Fair	Fair	Single stem forming spreading canopy that merges with neighbouring trees.	None.	None.	$20+$	${ }^{81}$	41	4
${ }_{\text {T00187 }}$		Sessile oak	Quercus petraea	$\frac{12}{12}$			4										Spreading crown from 2 m .				$\frac{81}{81}$	$\frac{55}{48}$	
To188 To189	$\begin{aligned} & 0188 \\ & 0189 \\ & 018 \end{aligned}$	Sessile oak	Quercus petriea	$\frac{12}{12}$	$\begin{array}{\|c} \hline 399 \\ \hline 233 \\ \hline \end{array}$	$\frac{2}{2}$	4	4	4	4	$\frac{2}{2}$	$\frac{2}{2}$	South	Em	$\frac{\text { fair }}{\text { fair }}$	Fair Fair	Twoleaders from 2 m .	None. None.	None.	$\frac{20+1}{20+}$	$\frac{81}{81}$	$\begin{aligned} & \hline 48 \\ & \hline 23 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \\ & \hline 3 \\ & \hline \end{aligned}$
T0190	0190	Sessile oak	Quercus petrica	11	190	1	-	4	4	4	2	2	West	SM	Fair	Fair	Single spreading crown from 4m.	None.	None.	$2{ }^{20+}$	${ }^{81}$	18	
To191	0191	Sessile oak		12	$\stackrel{240}{ }$	2	4			4	2		South	SM	$\underset{\text { Fair }}{\text { air }}$	$\underset{\text { Fair }}{\text { Fair }}$	Two leaders from 1.5 m .	None.	None.		${ }^{\frac{81}{81}}$	28 5	
T0192	0192 0193	Sessile oak	Quercus petriea	14	${ }_{360} 313$	1	4	4	4	4	2	2	East	em	$\underset{\text { Fair }}{ }$	$\underset{\text { Fair }}{\text { Fair }}$		None.	None.	$\frac{20+}{20+}$	${ }^{81}$	55 48	4
T0193	0193	Wychelm	Ulimus glabra	12	${ }^{313}$	3	3	5	5	5	5	1	West	em	Fair	Fair	${ }_{\text {park. }}$	None.	None.	${ }^{20+}$	${ }^{\text {B1 }}$	48	4
T0194	0194	Lime	Tilia sp.	14	690	1	5	5	5	5	2	0	South	M	Fair	Fair	Multistem forming spreading symetric crown.	Follow relevant method statements when working within RPA	New surface within RPA.	$20+$	${ }^{81}$	222	8
T0195	0195	Prunus	Prunus sp.	12	150	1	3	3	3	1	2	3	East	SM	Fair	Fair	Spreading assymetric crown from 3m.	None.	None.	${ }^{10+}$	Cl_{1}	10	2
T0196	0196	Field maple	Acer campestre	10	100	1	2	2	2	2	3	3	East	sm	Fair	Fair	Spreading crown from 3 mm , supressed growth due to neighbouring trees.	None.	None.	${ }^{10+}$	C1	5	1
T0197	0197	Lime	Tilia sp.	10	${ }^{110}$	1	2	2	2	2	1	2	South	SM	Fair	fair	Spreading crown from 2 m .	None.	None.	10+	C_{1}	5	1
T0198	0198	Sessile oak	Quercus petroea	11	280	1	3	5	5	2	6	4	East	SM	Fair	Fair	Spreading assymetric crown from 4m.	None.	None.	$2{ }^{20+}$	${ }^{81}$	34	3
т0199	0199	Ash	Fraxinus excelsior	${ }^{12}$	295	4	2	1	4	5	5	5	West	sm	Fair	Poor	Three stems from base forming assymetric crown.	$\begin{array}{\|l\|} \text { Remove to facilitate } \\ \text { proposal and replace as } \\ \text { good abrobicultural } \\ \text { practice. } \end{array}$	Removal due to road widening.	10+	c1	${ }^{41}$	4

"r

Tree No.	Tag No.	Species	Botanical Name	$\mathrm{H}(\mathrm{m})$	Stem	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \text { Stems } \end{array}$	N	${ }_{\text {Crown }}^{\text {E }}$	${ }_{\text {ppread }}^{\text {s }}$		c.c	$\underset{\text { (m) }}{\text { L.B.H }}$	L.B.D	Age	Physiological	Structural	Comments	Recommendations	Impact of Proposal	U.L.E	Cat.	RPA (m2)	RPA Radial distance (m)
To200	0200	Sycamore	Acer oseudoplatanus	11	220	1	3	2	4	3	3	4	West	SM	Fair	Fair	Single stem forming compact crown.	None.	None.	${ }^{10+}$	C1	${ }^{23}$	3
т201	0201	Ash	Fraxinus excelsior	11	297	2	2	3	3	6	4	4	West	ем	Fair	Fair	Twin ivy clad stem forming assymetric crown over footpath.	Remove to facilitate proposal and replace as good arboricultural practice.	Removal due to road widening.	10+	${ }^{1}$	${ }^{41}$	4
T0202	0202	Ash	Fraxinus excelsior	12	319	2	3	5	1	1	2	3	North	ем	Fair	Poor	Twin ivy clad stem forming assymetric crown.	Remove to facilitate development proposal and replace as good arboricultural practic	Removal due to road widening.	10+	${ }^{\text {c1 }}$	48	4
T0203	0203	Ash	Fraxinus excelsior	10	100	1	2	3	2	1	3	4	East	SM	Fair	Fair	Single stem forming assymetric crown from 3 m .	None.	None.	$1{ }^{10+}$	C1	5	1
To204	0204	Sessile oak	Quercus petroea	10	100	1	2	2	2	1	2	3	East	sM	Fair	Fair	Single stem forming asymetric crown from 3 m .	None.	None.	${ }^{10+}$	${ }^{\text {c1 }}$	5	1
T2025	0205	Sycamore	Acer pseudoplatanus	${ }^{12}$	270	1	2	2	2	4	5	4	West	ем	Fair	Fair	Single ivy clad stem forming assymetric crown.	Remove to facilitate proposal and replace as good arboricultura practice	Removal due to road widening.	10+	${ }^{\text {c1 }}$	${ }^{34}$	3
T0206	0206	Ash	fraxinus excelsior	10	190	1	3	5	4	2	4	5	East	SM	Fair	Fair	Single ivy clad stem forming assymetric crown.	None.	None.	$1{ }^{10+}$	${ }^{1}$	18	2
T0207	0207	Ash	Fraxinus excelsior	10	163	3	2	3	2	2	4	0	South	M	Fair	Poor	Multistem from base forming compact crown.	None.	None.	${ }^{10+}$	Cl_{1}	14	2
T0208	0208	Wych elm	Uimus glabra	9	100	1	2	3	2	2	2	4	South	ем	Fair	Fair	Single leaning stem forming compact crown.	None.	None.	${ }^{10+}$	${ }^{\text {c1 }}$	5	1
т2009	0209	Hawthorn (Common)	$\left\lvert\, \begin{gathered} \text { crateegus } \\ \text { monogyna } \end{gathered}\right.$	11	110	1	1	1	1	2	2	3	West	sm	Fair	Poor	Single stem forming assymetric crown, shadded out by neighbouring trees.	$\begin{gathered} \text { Remove to facilitate } \\ \text { proposal and replace as } \\ \text { good arboricultural } \\ \text { practice. } \end{gathered}$	Removal due to road widening.	${ }^{10+}$	c1	5	1
т2210	0210	Ash	fraxinus excelsior	11	280	3	4	2	1	5	2	0	North	sm	Fair	Poor	Three ivy clad stems leaning north due to competition from neighbouring trees, assymetric crown.	$\begin{array}{\|c\|} \hline \text { Remove to facilitate } \\ \text { proposal and replace as } \\ \text { good arboricultural } \\ \text { practice. } \end{array}$	Removal due to road widening.	${ }^{10+}$	${ }^{1}$	${ }^{34}$	3
T0211	0211	Ash	Fraxinus exelslior	12	260	1	4	4	2	3	4	4	North	SM	Fair	Fair	Singe ivy clad stem forming spreading crown.	None.	None.	${ }^{10+}$	C_{1}	28	3
T0212	0212	Wych elm	Uimus glabra	11	90	1	1	2	2	1	2	2	East	Y	Fair	Fair	Single stem assymetric crown from 2 m .	None.	None.	${ }^{10+}$	${ }^{\text {c1 }}$	5	1
т0213	0213	Wychelm	Ulmus glabra	11	280	1	4	4	2	4	2	3	North	sm	Fair	Fair	Single stem in play park forming spreading crown.	Follow relevant method statements when working within RPA	New surface within RPA.	$20+$	${ }^{81}$	${ }^{34}$	${ }_{3}$
T0214	0214	Sessile oak	Quercus petroea	12	449	3	4	7	7	4	1	1	South	M	Fair	Fair	Three stems from 1 m forming spreading crown.	None.	None.	$\underline{20+}$	$\frac{81}{}$	92	5
To215	0215	Sessile oak	Quercus petroea	12	340	1	5	2	7	7	2	3	North	em	Fair	Fair	Single stem forming spreading crown from 3 m .	None.	None.	$2{ }^{20+}$	${ }^{81}$	55	4
T0216	0216	Sessile oak	Quercus petrrea	10	120	1	4	1	1	4	3	2	West	sm	Fair	Poor	Two leaders from 2 m forming assymetric crown, shadded out by neighbouring trees with little space for growth and development.	None.	None.	${ }^{10+}$	Cl^{1}	7	2
T0217	0217	Sessile oak	Quercus petroea	12	220	1	5	6	2	2	3	4	East	SM	Fair	Fair	Single stem spreading crown from 4m.	None.	None.	$2{ }^{20+}$	${ }^{81}$	23	3
${ }_{\text {To218 }}^{\text {To219 }}$	0218 0219	Sele ${ }_{\text {Sessile }}$ Seak	Queruspetrea	$\frac{12}{12}$	340 390	1	6	${ }_{4}^{6}$	${ }_{3}^{4}$	${ }_{7}^{6}$	${ }_{3}$	$\stackrel{3}{2}$	$\underset{\substack{\text { East } \\ \text { East }}}{\text { ester }}$	EM EM	$\frac{\mid \text { fair }}{\text { fair }}$	$\underset{\substack{\text { Fair } \\ \text { Fair }}}{\text { aren }}$	$\frac{\text { Single stem forming spreading crown from } 2 \mathrm{~m} \text {. }}{\text { Single stem spreding crown from } 3 \mathrm{~m} \text {. }}$	None.	$\frac{\text { None. }}{\text { None. }}$	$\frac{20+}{20+}$	$\frac{81}{81}$ 81	55 72	${ }_{5}^{4}$
T0220	0220	Scarlet oak	Quercus coccinea	11	240	1	5	4	4	4	3	3	West	ем	Fair	Fair	Single stem spreading crown from 3 m .	Follow relevant method statements when working within RPA.	Resurfacing within RPA.	${ }^{20+}$	${ }^{81}$	28	3
T0221	0221	Prunus	Prunus sp.	6	170	1	4	4	4	4	3	3	East	SM	Fair	Fair	Single stem spreading crown from 3m.	None.	None.	$2{ }^{20+}$	${ }^{81}$	14	
${ }_{T}^{\text {To222 }}$	${ }_{0}^{0222}$	Prunus	Prunus sp.	${ }^{6}$	${ }^{160}$	1	4	4	${ }_{5}^{4}$	4	${ }_{3}^{3}$	3	West	SM	Fair	$\stackrel{\text { Fair }}{\text { fair }}$	Single stem spreading crown from 3 m .	None.	None.	$20+$	${ }^{81}$	10	$\stackrel{2}{2}$
${ }^{\text {T0223 }}$	0223	Prunus	Prunus sp.	6	210	1	4	4	5	4	3	3	East	SM	Fair	Fair	Single stem spreading crown from 3 m .	None.	None.	$\underline{20+}$	81	18	2
т0224	0224	Prunus	Prunus sp.	6	160	1	4	4	4	4	3	3	West	SM	Fair	Fair	Single stem spreading crown from 3 m .	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Remove to facilitate } \\ \text { proposal and replace as } \\ \text { good arboricilutural } \\ \text { practice. } \end{array} \\ \hline \end{array}$	Removal due to road widening.	${ }^{20+}$	${ }^{81}$	7	2
т0225	0225	Lime	Tilia sp.	15	450	1	5	6	4	2	2	5	South	m	Good	Fair	Single stem forming spreading crown from 5 m .	$\begin{array}{\|c\|} \hline \text { Remove to facilitate } \\ \text { proposal and replace as } \\ \text { good arboricultural } \\ \text { practice. } \end{array}$	Removal due to road widening.	${ }^{40+}$	${ }^{\text {A1 }}$	92	5

G-Group H-Hedgerow W-Woodland P-Tree is on private land TTree is not on topographical survey and therrore position remains indicitive \# Measurements estimated (tree is inaccessible)

Three leaders from 5m, central leader dividing at 6 m forming spreading crown, prominent high value tree in local landscape.
forks at 7 m forming spreading crown, p high value tree in local landscape.
fom 3 m forming spreading crown, value tree in local landscape.
gle stem with extended limb south at 8 m , p reduced, forms assymetric crown.
primary limb at 8 m east and underwent heavy crown reduction, deadwood $<100 \mathrm{~mm} \varnothing$.
Single stem forming spreading crown from 7 m , prominent high value tree in local landscape.
Two leaders from 6 m , larger east over road previously pruned to unions, dense epicormic regrowth forming new spreading crown, prominent tree in local landscape.
Single stem, previously crown raised with primary limbs removed, spreading crown from 6 m , prominent high value tree in local landscape.
Single stem forming spreading crown from 5 m , prominent high value tree in local landscape
Single stem 1 m from wall with compact cro
Single stem forming spreading crown from 6 m , prominent high value tree in local landscape.
Single stem spreading crown from 5 m , prominent high value tree in local landscape
Mixed species vegetation comprising elder, cherry, sycamore that wraps around corner of junction.
Three stems from 3 m forming spreading crown, in roadside verge surrounded by vegetation.
Linear group along boundary, behind stone w
Clustered group comprising sycamore, horse chestnut and lime with merged canopies, behind stone boundary wall.
gle stem forming assymetric crown be
Single stem forming spreading crown from 5 m , dieback.
Single stem forming compact crown beneath neighbouring trees, 1 m behind stone wall.
Sngle stem forming compat symetric crown from
Single stem forming spreading crown 10 m , previously pruned west over road, cavity at 6 m south, dieback in upper crown.
Single stem forming assymetric crown south behind stone wall, canopy merges with neighbouring tree.
Single stem forming spreading crown from 4 m merges with neighbouring tree, behind stone wall.
$\begin{gathered} \hline \begin{array}{c} \text { Single stem forming compact narrow crown, } 0.5 \mathrm{~m} \text { from stone } \\ \text { wall. } \end{array} \\ \hline \end{gathered}$
Single stem forming spreading crown from $3 m$, behind stone wall.
Single stem forming spreading crown from $3 m$, behind stone wall.
Single stem forming spreading crown from 4 m, prominent thigh value tree in local landscape
Single stem, dense epicormic growth from base, forming spreading crown, prominent high value tree in local landscape.

| Recommendations |
| :---: | :---: |
| None. | RPA Radial

distance (m)

| U.L.E | Useful life expectancy (yrs) |
| :--- | :--- | :--- |

Tree No.	Tag No.	Species	Botanical Name	H (m)	Stem	No of		Crown	read		c.c	L.B.H	L.B.D	Age	Physiological	Structural
T0308	0308	Horse chestrut	Aesculus hippocastanum	12	Dia. 400	Stems	N	E	s	w	(m)	(m)	West	M	Fair	Fair
T0309 P		Turkey oak	Quercus cerris	19	1050\#	1	6	7	8	9	2	6	west	м	Good	Fair
T0310 P		Turkey oak	Quercus cerris	18	950\#	1	6	8	5	7	2	5	west	m	Good	Fair
T0311* ${ }^{\text {P }}$		Fastigiate hornbeam	$\begin{aligned} & \text { Carpinus betulus } \\ & \text { fastigiata } \end{aligned}$	5	180\#	1	1	1	1	1	0	0	South	SM	Fair	Fair
T0312* P		Fastigiate hornbeam	$\begin{aligned} & \text { Carpinuus setulusus } \\ & \text { fastigitata } \end{aligned}$	5	180\#	1	1	1	1	1	0	0	South	SM	Fair	Fair
T0313* P		Fastigiate hornbeam	$\begin{aligned} & \text { Carpinus betulus } \\ & \text { fastigiata } \end{aligned}$	5	180	1	1	1	1	1	0	0	South	sm	Fair	Fair
T0314* ${ }^{\text {P }}$		Fastigiate hornbeam	$\begin{aligned} & \text { Carpinus betulus } \\ & \text { fastigiata } \end{aligned}$	5	180\#	1	1	1	1	1	0	0	South	sM	Fair	Fair
T0315	0315	Ash	Fraxinus excelsior	16	890	1	6	4	5	6	5	6	North	M	Fair	Fair
т0316	0316	Sycamore	Acer pseudoplatanus	14	490	1	6	6	2	4	4	3	South	M	Fair	Fair
т0317	0317	Hornbeam	Carpinus betulus	12	320	1	3	3	3	3	4	3	South	M	Fair	Fair
T0318	0318	Hornbeam	Carpinus betulus	12	340	1	3	3	3	3	4	3	West	M	Fair	Fair
T0319	0319	Hornbeam	Carrinus betulus	10	360	1	3	4	3	3	4	3	west	M	Fair	Fair
T0320	0320	Hornbeam	Carrinus betulus	11	250	1	2	2	2	2	4	3	west	ем	Fair	Fair
T0321	0321	Hornbeam	Carpinus betulus	12	350	1	2	2	2	2	4	3	East	m	Fair	Fair
T0322	0322	Horrbeam	Carpinus betulus	11	260	1	3	2	2	2	4	3	South	ем	Fair	Fair
T0323	0323	Hornbeam	Carpinus betulus	12	270	1	2	2	2	2	4	3	west	ем	Fair	Fair
т0324	0324	Hornbeam	Carpinus betulus	12	300	1	3	3	2	3	4	3	West	EM	Fair	Fair
T0325	0325	Hornbeam	Carrinus betulus	12	260	1	3	2	2	2	4	3	South	ем	Fair	Fair
${ }^{60326 * *}$		Leylandii	$\begin{array}{\|l\|} \text { x cupressocyparis } \\ \text { leylandii } \end{array}$	9	220\#\#	1	2	2	2	2	2	2	West	ем	Fair	Fair
T0327* P		Copper beech	Fagus sylvatica 'purpurea'	11	240\#\#	1	3	2	3	2	3	3	South	ем	Fair	Fair
T0328 P		Sycamore	Acer pseudoplatanus	11	480\#	1	3	4	5	4	3	3	West	M	Fair	Fair
T0329 P		sycamore	$\begin{aligned} & \text { Acer } \\ & \text { Aseudoplatanus } \end{aligned}$	11	590\#	1	4	4	3	4	4	3	West	M	Fair	Fair
T0330 P		Sycamore	Acer pseudoplatanus	8	280\#	1	2	2	2	2	2	2	East	SM	Fair	Fair
H0331* ${ }^{\text {P }}$		Beech	Fagus syluatica	6	100\#	1	2	2	2	2	0	0	East	SM	Fair	Fair
${ }^{60332 *}{ }^{\text {P }}$		Sycamore	Acer pseudoplatanus	10	${ }^{220 \# \#}$	1	3	3	3	3	4	2	West	SM	Fair	Fair
$60333^{*} \mathrm{P}$		Mixed Species Group	N/a	5	90\%	1	1	2	2	2	2	0	0	EM	Fair	Fair
т033**		Sycamore	Acer seen pseudoplatanus	12	260\#	1	3	3	3	3	2	2	East	sm	Fair	Poor
T0335 P		Black pine	Pinus nigra	15	650\#	1	4	7	5	7	6	3	East	M	Fair	Poor
T0336 P		Black pine	Pinus nigra	15	840\#	1	5	4	6	4	8	6	South	M	Good	Fair
T0337 P		Beech	Fagus sylvatica	15	490\#	1	4	4	5	4	5	4	South	м	Fair	Fair

Comments	Recommendations	Impact of Proposal	U.L.E	Cat.	RPA (m2)	RPA Radial distance (m)
Single iy clad stem beneath oak, little space for rrowth and development.	None.	None.	${ }^{10+}$	C1	72	5
Single stem forming spreading crown from 6 m , prominent high value tree in local landscape.	None.	None.	${ }^{40+}$	A1	499	13
Single stem forming spreading crown from 6 m , prominent high value tree in local landscape.	None.	None.	$40+$	${ }^{\text {A1 }}$	408	11
Compact crown either side of entrance to private property.	None.	None.	${ }^{10+}$	C1	14	2
Compact crown either side of entrance to private property.	None.	None.	${ }^{10+}$	C1	14	2
Compact crown either side of entrance to private property.	None.	None.	${ }^{10+}$	c1	14	2
Compact crown either side of entrance to private property.	None.	None.	${ }^{10+}$	c1	14	2
Single stem forming spreading crown from $6 m$, cavities and pruning wounds on main stem and unions, forming spreading crown, dieback in upper crown, in bark planted border.	None.	None.	$20+$	${ }^{81}$	366	11
Single stem forming symetric spreading crown, c. 2 m from wall in raised planted bed.	None.	None.	$20+$	${ }^{81}$	113	6
Single stem forming symetric spreading crown, c.2m from wall	None.	None.	${ }^{20+}$	${ }^{81}$	48	4
Single stem forming symetric spreading crown, c.2m from wall $\begin{gathered}\text { in raised planted bed. }\end{gathered}$	None.	None.	$20+$	${ }^{81}$	55	4
Single stem forming symetric spreading crown, c .2 m from wall in raised planted bed.	None.	None.	${ }^{20+}$	${ }^{81}$	55	4
Single stem forming symetric spreading crown, c. 2 m from wall in raised planted bed.	None.	None.	${ }^{20+}$	${ }^{81}$	28	3
Single stem forming symetric spreading crown, c. 2 m from wall in raised planted bed.	None.	None.	$20+$	${ }^{81}$	55	4
Single stem forming symetric spreading crown, c .2 m from wall	None.	None.	$20+$	${ }^{81}$	28	3
Single stem forming symetric spreading crown, c.2m from wall	None.	None.	$20+$	${ }^{81}$	34	3
Single stem forming symetric spreading crown, $c .2 \mathrm{~m}$ from wall	None.	None.	$20+$	${ }^{81}$	41	4
Single stem forming symetric spreading crown, c. 2 m from wall in raised planted bed.	None.	None.	${ }^{20+}$	${ }^{81}$	28	3
Dense cluster of stems along boundary behind fence.	None.	None.	${ }^{10+}$	c2	23	3
Single stem forming part of wider group that extends east behind wooden fence.	None.	None.	${ }^{10+}$	C1	28	3
Single stem forming assymetric crown from 3 m , behind stone wall in planted border.	None.	None.	${ }^{20+}$	${ }^{81}$	102	6
Two leaders from 3 m forming spreading crown, behind stone wall in planted border.	None.	None.	$20+$	${ }^{81}$	163	7
Three stems from $2 m$ forming compact crown, behind stone wall in planted border	None.	None.	${ }^{10+}$	c1	34	3
Boundary hedge behind stone wall.	None.	None.	10+	c^{2}	5	1
Linear group extending along boundary behind stone wall.	None.	None.	${ }^{10+}$	c2	23	3
Linear hedge along boundary behind stone wall.	None.	None.	${ }^{10+}$	c^{2}	5	1
Dense ivy clad stems on land c. $3-5 \mathrm{~m}$ below bridge and road that extend from start of bridge to roundabout.	None.	None.	10+	c2	28	${ }_{3}$
Forks at 3 m , ivy clad forming spreading crown over road east to centre of road, prominent high value tree in local landscape, behind stone wall on land c 4 m below road level.	None.	None.	$20+$	${ }^{81}$	191	8
Single ivy clad stem forming spreading crown, prominent high value tree in local landscape, behind stone wall on land c.3m below road level.	None.	None.	${ }^{40+}$	${ }^{\text {A1 }}$	327	10
Two ivy clad leaders from 4 m , forming spreading crown beneath neighbouring pine, behind stone wall on land $c .3 \mathrm{~m}$ below road level.	None.	None.	${ }^{20+}$	${ }^{81}$	113	6

Page 16 of 78

VIA (Veteran/Ancient) Ancient charactersisics or consenvation value

Tree No.	Tag No.	Species	Botanical Name	$\mathrm{H}(\mathrm{m})$	Stem	No of		E	$\stackrel{\text { read }}{\text { s }}$)	c.C	$\begin{gathered} \mathrm{L} . \mathrm{B} . \mathrm{H} \\ (\mathrm{~m}) \end{gathered}$	L.B.D	Age	Physiological	Structural
T0338 P		Beech	Fagus sylvatica	16	640\#	1	4	7	8	7	3	6	South	м	Fair	Fair
T0339 P		Beech	Fagus sylvatica	15	550\#	1	4	7	4	7	3	8	South	м	Fair	Fair
T0340 P		Beech	Fagus sylvatica	15	580\#	1	7	5	4	5	4	8	East	m	Fair	Fair
T0354 P		Horse chestrut	Aesculus hippocastanum	11	${ }^{710 \#}$	1	5	5	5	6	2	2	East	M	Good	Fair
т035**		Horse chestrut	Aesculus hippocastanum	${ }^{13}$	470\#	1	6	5	5	7	2	2	West	M	Fair	Fair
T0356 P		Ash	Fraxinus excelsior	14	210\#	2	4	4	3	2	5	1	South	sм	Fair	Poor
T0357	0357	Beech	Fagus sylvatica	18	930	1	8	7	9	8	6	6	West	m	Good	Fair
T0358	0358	Sycamore	Acer pseudoplatanus	17	1250	1	6	6	6	7	4	5	North	M	Good	Fair
T0359	0359	Sycamore	${ }_{\text {Acer }}^{\text {pseudoplatanus }}$	20	750	1	5	5	5	5	4	4	East	M	Poor	Fair
T0360	0360	Mixed Species Group	N/a	15	480	1	5	5	5	5	2	2	North	M	Fair	Fair
T0361 P	0361	Horse chestrut	Aesculus hippocastanum	6	240	1	4	3	2	2	4	2	West	SM	Fair	Fair
T0362 ${ }^{\text {P }}$	0362	Oak	Quercus robur	14	630	1	5	5	4	5	2	3	West	м	Good	Fair
T0363 P	0363	Ash	Fraxinus excelsior	15	480	1	5	5	5	5	9	9	North	m	Fair	Fair
T0364 P	0364	Beech	Fagus sylvatica	12	480	1	4	5	5	4	2	2	East	m	Fair	Fair
T0365	0365	Beech	Fagus sylvatica	14	500	1	4	4	3	4	3	2	East	M	Fair	Fair
т0366	0366	Horse chestrut	Aesculus hippocastanum	14	340	1	5	8	5	5	3	3	South	ем	Good	Fair
T0367	0367	Lime	Tilias sp.	${ }^{11}$	290	1	3	3	3	3	3	${ }^{3}$	South	sm	Fair	Fair
T0368	0368	Lime	Tilias sp.	11	280	1	3	3	3	3	3	3	South	sm	Fair	Fair
т0369	0369	Lime	Tilia sp.	${ }^{11}$	260	1	3	3	3	3	3	3	South	sм	Fair	Fair
T0370	0370	Lime	Tilias sp.	11	260	1	3	3	3	3	3	3	South	sm	Fair	Fair
T0371	0371	Whitebeam	Sorbus aria	5	120	1	1	1	2	1	2	2	East	SM	Fair	Fair
${ }_{\text {T0372 }}{ }_{\text {T0373 }}$	${ }_{0}^{0372}$	Horrmbeam	Carpius bettuus	8	$\frac{220}{210}$	1	3	3	$\frac{3}{3}$	$\frac{3}{3}$	$\frac{2}{2}$	$\frac{2}{2}$	${ }_{\text {South }}^{\text {Sast }}$	SM	$\frac{\text { Fair }}{\text { Fair }}$	$\frac{\text { Fair }}{\text { Fair }}$
T0374	0374	Hormbeam	Carpinus betulus	8	260	1	3	3	3	3	2	2	East	SM	Pagein 7 of 7	Fair

Single stem forming spreading crown that merges with neighbouring beech forming cohesive spreading canopy alon boundary of private land, behind stone wall c.3m below roa level.
with neighbouring beech forming cohesive spreading canopy on private land c. 3 m below site level.
Single stem forming spreading crown from 8 m , canopy merge with neighbouring beech forming cohesive spreading canopy on private land c .3 m below site level.
Single ivy clad stem forming spreading crown from $2 m$, in newly landscaped area on grass, behind stone wail
Pseudomonas syringae pv. ae
nstem from 1m, hist crown dieback
Single stem from bottom of 2 m embankment, 1 m from pavement, spreading crown from $6 \mathrm{~m}, 3 \mathrm{~m}$ from fence around property west, prominent tree in local landscape.
Single ivy stem forming spreading crown from 5 m , on bank c .1 above road height, torn limbs north $>250 \mathrm{~mm} \varnothing$, prominent tre in local landscape.
Two ivy clad leaders from 4m, upper crown dieback, dea
Dense group comprising beech and sycamore that extends length of street, starts on raised bank c. 1 m above road and extend south.
Single stem forming assymetric crown beneath neighbouring oak, on land c.1.5m above pavement behind stone retaining wall.
above pavement behind stone retaining wall.
Single ivy clad stem into crown, two leaders from 9 m fo symetric crown.
Pair forming spreading canopy on land $\mathrm{c} .2-3 \mathrm{~m}$ above pavem behind stone retaining wall.
Pair forming spreading canopy on land $c .2-3 \mathrm{~m}$ above pave behind stone retaining wall.
c.1.5m above pavement at corner, 2 m from footpath
Single stem forming symetric merged canopies, linear row grass verge between road and pavement.
Single stem forming symetric merged canopies, linear row grass verge between road and pavement.
Single stem forming symetric merged canopies, linear ro grass verge between road and pavement.
Single stem forming symetric merged canopies, linear ro grass verge between road and pavement.
g sy

$\xrightarrow{r y}$

Tree No.	Tag No.	Species	Botanical Name	H (m)	Stem	No of	N	own	${ }_{\text {read }}$	w	$\begin{aligned} & \text { C.C } \\ & (\mathrm{m}) \end{aligned}$	L.B.H	L.B.D	Age	Physiological	Structural
60376* ${ }^{\text {P }}$		Mixed Species Group	N/a	10	220\#	1	3	3	3	3	2	2	West	sm	Fair	Fair
6037* ${ }^{\text {P }}$		Leylandii	x Cupressocyparis leylandii	14	330\#	1	4	4	4	4	2	2	East	ем	Fair	Fair
T0378	0378	Hornbeam	Carpinus betulus	8	170	1	3	3	3	3	2	2	East	SM	Fair	Fair
T0379	0379	Hornbeam	Carpinus betulus	-	240	1	3	3	3	3	2	2	South	SM	Fair	Fair
T0380	0380	Hornbeam	Carpinus betulus	8	210	1	3	3	3	3	2	2	South	SM	Fair	Fair
T0381	0381	Hornbeam	Carpinus betulus	8	230	1	3	3	3	3	2	2	South	SM	Fair	Fair
T0382	0382	Hornbeam	Carpinus betulus	8	240	1	3	3	3	3	2	2	South	SM	Fair	Fair
т0383* P		Cedar of lebanon	Cedrus libani	19	1460\#	1	6	6	7	6	7	6	South	M	Good	Fair
T0384* P		Monterey cypress	Cupressus	15	640\#\#	1	7	5	6	5	6	4	East	M	Fair	Fair
T0385 P		Silver birch	Betula pendula	8	120\#	1	2	2	2	2	2	2	East	SM	Fair	Fair
T0386 P		Silver birch	Betula pendula	10	150\#	1	2	3	3	2	2	2	South	SM	Fair	Fair
T0387 P		Silver birch	Betula pendula	12	330\#	2	3	3	3	2	2	2	South	M	Fair	Fair
T0388 P		Silver birch	Betula pendula	8	110\#	1	2	3	3	2	2	2	East	sm	Fair	Fair
T0389 P		Silver birch	Betula pendula	9	140\#	1	2	2	2	2	2	2	North	SM	Fair	Fair
T0390 P		Wild cherry	Prunus avium	10	270\#	2	4	1	3	1	3	1	East	SM	Fair	Poor
60391* ${ }^{\text {P }}$		Mixed Species Group	N/a	10	240\#	1	2	2	2	2	2	0	North	SM	Fair	Fair
то392* ${ }^{\text {P }}$		Ash	Fraxinus excelsior	12	450\#	2	6	6	6	6	2	1	South	M	Fair	Fair
ноз93**		New Zealand Privet	Griselina littoralis	1	100\#	1	1	2	2	2	2	2	South	SM	Fair	Fair
6039** ${ }^{\text {P }}$		Mixed Species Group	N/a	10	220\#	1	2	2	2	2	2	2	South	SM	Fair	Fair
60395 P		Mixed Species Group	N/a	10	220\#	1	2	2	2	2	2	2	South	sm	Fair	Fair
т0396* ${ }^{\text {P }}$		Eucalyptus	Eucalyptus globulus	12	420\#	1	3	4	4	4	4	3	South	M	Fair	Fair
H0397* P		Mixed Species Hedge	N/a	2	120\#	1	1	1	1	1	0	0	South	SM	Fair	Fair
${ }^{60398 * ~} \mathrm{P}$		Mixed Species Group	N/a	10	240\#	1	3	3	3	3	2	0	South	M	Fair	Fair
T0399* P		Sycamore	Acer pseudoplatanus	${ }^{14}$	540\#	1	8	6	7	6	2	2	West	M	Fair	Fair
T0400* P		Ash	Fraxinus excelsior	${ }^{13}$	640\#	4	7	6	6	6	2	1	west	м	Fair	Fair

	Comments
Landscaped planting in garden comprising birch, purple plum, cherry and kohuhu, behind stone wall.	
ds behind stone wall.	
	$\frac{\text { Single stem forming symetric crown in pavement. }}{\text { Sinde }}$.
Single stem forming symetric crown in pavement.	
	Single stem forming symetric crown in pavement.
Twin stem forming spreading crown, in planted border on private land.	
Ivy clad stem forming spreading crown behind stone wall c.2m from pedestrian crossing.	
Single stem in church grounds.	
Single stem forming spreading crown from 2 m in church	
Single stem forming spreading crown from 2 m in church	
Single stem forming spreading crown from 2 m in church	
Single stem forming spreading crown from 2 m in church	
Twin stem from 1 m previously poorly pruned, assymetric crown, in grass at church, behind stone wall.	
Mixed species group comprising yew, thuja, cherry and kohuhubehind stone wall on private land.	
Twin ivy clad stem behind stone wall on private land forming	
Linear hedge around boundary of church.	
Mixed species group comprising yew, thuja, cherry and kohuhu behind stone wall in private land.	
Mixed species group comprising griselina, birch and apple onprivate land.	
	Spreading crown in front garden behind bus stop.
	Linear hedge along boundary of private gardens.
Mixed species group comprising leylandii, ash and sycamore that wraps around boundary of private garden.	
Pair of ivy clad ash and sycamore within c. 1 m forming merged spreading canopy at corner of fence tight to pavement.	
	Multistem specimen, ivy clad forming spreading crown, c. 2.5 m from pavement in dense vegetation.

$\xrightarrow{75}$

| Tree No. | Tag No. | Species |
| :---: | :---: | :---: | :---: |

Botanical Name	H (m)	$\begin{array}{\|c} \hline \text { Stem } \\ \text { Dia. } \end{array}$	$\begin{array}{\|l\|} \hline \text { No of } \\ \text { Stems } \end{array}$	Crown Spread (m)				$\begin{aligned} & \text { c.c. } \\ & \hline(\mathrm{m}) \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { L.B.H } \\ (\mathrm{m}) \\ \hline \end{gathered}$	L.B.D	Age	Physiological	Structural
				N	E	5	w						
Fagus syluatica	17	600\#	1	7	7	7	7	4	2	South	M	Fair	Fair
$\begin{aligned} & \text { Populus nigra } \\ & \text { 'Italica' } \end{aligned}$	20	450\#	1	4	4	4	4	2	4	East	M	Fair	Fair
Pinus sylvestris	16	540\#	1	5	5	6	5	2	5	South	m	Fair	Fair
N/a	14	300\#	1	3	3	3	3	2	2	west	ем	Fair	Fair
N/a	8	120\#	1	3	3	3	3	2	2	South	sm	Fair	Fair
Corylus avellana	5	160	1	2	2	2	2	0	0	South	sm	Fair	Fair

Comments	Recommendations	Impact of Proposal	U.L.E	Cat.	RPA (m2)	RPA Radial distance (m)
Linear group of six behind stone boundary wall.	None.	None.	$20+$	${ }^{82}$	163	7
Linear group of six behind stone boundary wall.	None.	None.	$20+$	$\frac{82}{}$	163	7
Linear group of six behind stone boundary wall.	None.	None.	$20+$	${ }^{82}$	92	5
Single ivy clad stem previously pruned lower limbs, forming spreading crown behind stone wall.	None.	None.	${ }^{20+}$	${ }^{\text {B1 }}$	137	7
Mixed species group comprising sycamore, alder and lombardy poplar behind stone wall.	None.	None.	10+	c2	41	4
Mixed species group comprising leylandii and sycamore that extends west of stone wall.	None.	None.	10+	c2	7	2
Linear group predominately comprising hazel that divides road from cycle path and footpath.	$\begin{aligned} & \text { Remove to facilitate } \\ & \text { proposal and replace as } \\ & \text { good arboricultural } \\ & \text { practice. } \end{aligned}$	Part removal due to road widening.	${ }^{10+}$	c2	10	2
Linear group predominately comprising hazel that divides road from cycle path and footpath.	Remove to facilitate proposal and replace as good arboricultural practice.	Part removal due to road widening.	${ }^{10+}$	c2	7	2
Dense group comprising sycamore, ash, alder and lombardy poplar behind stone wall.	None.	None.	${ }^{10+}$	c2	34	3
Dense woodland that extends beyond stone wall in Eurofound land.	None.	None.	$20+$	B2	55	4
Single stem forming compact crown in private garden.	None.	None.	${ }^{10+}$	C1	28	3
Single stem forming compact crown in private garden.	None.	None.	${ }^{10+}$	c1	28	3
$\begin{aligned} & \text { Mixed species group in private garden comprising cherry, ash } \\ & \text { and hornbeam. } \end{aligned}$	None.	None.	10+	c2	18	2
Privet hedge that wraps around boundary of property.	None.	None.	${ }^{10+}$	c2	7	2
Two leaders from $2 m$ forming compact crown in grass verge by	None.	None.	$10+$	C1	18	2
Single stem forming compact crown from 2 m in grass verge by footpath.	None.	None.	10+	C1	48	4
Laurel hedge that wraps around property behind stone wall.	None.	None.	${ }^{10+}$	c2	7	2
$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Spreading crown behind stone wall, basal decay, stem decay, } \\ \text { historic pruning wounds. } \end{array} \\ \hline \end{array}$	None.	None.	10+	C1	523	13
Single iy clad stem forming spreading crown from 6 m .	None.	None.	${ }^{20+}$	${ }^{81}$	547	13
Recently planted in park, beyond stone wall.	None.	None.	${ }^{10+}$	C_{1}	5	1
Recently planted in park, beyond stone wall.	None.	None.	${ }_{10+}^{10+}$	C1	5	1
Recently planted in park, beyond stone wall.	None.	None.	$\frac{10+}{10+}$	${ }_{\text {C1 }}$	5	1
Recently planted in park, beyond stone wall.	None.	None.	${ }_{10+}$	${ }^{\text {c1 }}$	5	1
Recently planted in park, beyond stone wall.	None.	None.	${ }^{10+}$	C1	5	1
Recently planted in park, beyond stone wall.	None.	None.	${ }_{10+}$	C_{1}	5	1
Recently planted in park, beyond stone wall.	None.	None.	${ }_{10+}$	C1	5	1
Recently planted in park, beyond stone wall.	None.	None.	10+	C_{1}	5	1
Recently planted in park, beyond stone wall.	None.	None.	$\frac{10+}{10+}$	${ }_{\text {C1 }}$	5	1
Recently planted in park, beyonod stone wall.	None.	None.	$\frac{10+}{10+}$	Cl^{1}	5	1
Recently planted in park, beyond stone wall.	None.	None.	${ }^{10+}$	C_{1}	5	1
Recently planted in park, beyond stone wall.	None.	None.	10+	C 1	5	1
Recently planted in park, beyond stone wall.	None.	None.	10+	${ }^{\text {c1 }}$	5	1
Recently planted in park, beyond stone wall.	None.	None.	$10+$	C1	5	1
Single stem compact crown on landscaped area close to stone wall.	None.	None.	10+	C1	14	2
$\begin{array}{c}\text { Single stem compact crown on landscaped area close to stone } \\ \text { wall. }\end{array}$	None.	None.	${ }^{10+}$	C1	14	2
Single stem compact crown on landscaped area close to stone wall.	None.	None.	$10+$	${ }^{\text {C1 }}$	18	2
Single stem compact crown on landscaped area close to stone wall.	None.	None.	$10+$	c1	18	2

G-Group H-Hedgerow W-Woodland P-Tree is on private land TTree is not on topographical survey and therorore position remains indicitive \# Measurements estimated (tree is inaccessible)

Tree No.	Tag No.	Species	Botanical Name	$\mathrm{H}(\mathrm{m})$	Stem	No of	${ }_{\mathrm{N}}^{\mathrm{c}}$	Erown	read	n)	$\begin{array}{l\|} \hline \text { C.C } \\ (\mathrm{m}) \end{array}$	$\underset{\substack{\text { L.B.H } \\(\mathrm{m})}}{ }$	L.B.D	Age	Physiological	Structural
T0531P		Hornbeam	Carrinus betulus	7	200\#	1	2	2	2	2	0	0	South	sm	Fair	Fair
H0532* ${ }^{\text {P }}$		New Zeeland Privet	Griselina littoralis	2	120\#	1	1	1	1	1	0	0	South	SM	Fair	Fair
то533* P		Balsam Poplar	Populus balsamifera	10	210\#	1	1	1	1	1	1	1	South	sm	Fair	Fair
то534* P		Balsam Poplar	Populus balsamifera	12	220\#	1	1	1	1	1	1	1	South	Sm	Fair	Fair
To533* P		Balsam Poplar	Poopulus balsamifera	12	240\#	1	1	1	1	1	1	1	South	SM	Fair	Fair
T0536* P		Monterey cypress	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|cr:ccr} \text { Curpa } \\ \text { macr } \end{array}$	12	240\#	1	3	3	3	3	4	2	West	SM	Fair	Fair
T0537 P		Laburnum	Laburnum sp.	4	320\#	1	2	2	2	2	0	1	South	M	Fair	Poor
60538* P		Mixed Species Group	N/a	10	240\#	1	2	2	2	2	2	2	East	SM	Fair	Fair
60533* ${ }^{\text {P }}$		Mixed Species Group	N/a	17	${ }^{750 \#}$	1	6	6	6	6	2	2	South	M	Good	Fair
T0540	0540	Hornbeam	Carpinus betulus	8	140	1	1	1	1	1	2	2	South	SM	Fair	Fair
т 0541	0541	Hormbeam	Carpinus betulus	8	150	1	1	1	1	1	2	2	South	SM	Fair	Fair
T0542	0542	Hornbeam	Carpinus betulus	8	150	1	1	1	1	1	2	2	South	SM	Fair	Fair
т0543	0543	Hornbeam	Carpinus betulus	8	160	1	1	1	1	1	2	2	South	SM	Fair	Fair
т 0544	0544	Hornbeam	Carpinus betulus	8	150	1	1	1	1	1	2	2	East	em	Fair	Fair
T0545	0545	Hormbeam	Carpinus betulus	8	150	1	1	1	1	1	2	2	East	SM	fair	Fair
T0546	0546	Hornbeam	Carpinus betulus	8	140	1	1	1	1	1	2	2	East	SM	Fair	fair
T0547	0547	Hornbeam	Carpinus betulus	8	160	1	1	1	1	1	2	2	South	SM	Fair	Fair
T0548	0548	Hormbeam	Carpinus betulus	8	160	1	1	1	1	1	2	2	South	SM	Fair	Fair
T0549	0549	Hornbeam	Carpinus betulus	8	160	1	1	1	1	1	2	2	South	ем	fair	Fair
т0550	0550	Hornbeam	Carpinus betulus	8	150	1	1	1	1	1	2	2	North	SM	Fair	Fair
T0551	0551	Lombardy Poplar	$\begin{array}{\|l} \hline \text { Populus nigra } \\ \text { 'Italica' } \\ \hline \end{array}$	18	1110	1	4	4	4	4	4	3	South	M	Fair	Fair
T0552	0552	Lombardy Poplar	Populus nigra Italica'	16	${ }^{840}$	1	4	4	4	5	4	3	East	M	Fair	Fair
T0553	0553	Lombardy Poplar	Populus nigra 'Italica'	16	770	1	3	4	4	4	4	3	West	M	Fair	Fair
T0554	0554	Lombardy Poplar	$\begin{array}{\|l} \hline \text { Populus nigra } \\ \text { 'Italica' } \end{array}$	16	790	1	2	4	4	4	4	3	West	M	Fair	Fair
${ }^{\text {T0555 }}$	0555	Balsam Poplar	Populus balsamifera	16	1160	1	9	10	8	8	4	4	North	M	Good	Fair
To556	0556	Ash	Fraxinus excelsior	12	480	1	4	4	5	4	4	3	South	M	Fair	Fair
T0557	0557	silver birch	Betula pendula	12	260	1	3	3	3	3	2	4	South	SM	Fair	Fair
To558	0558	Lime	Tilia xeuropaea	14	440	1	4	6	6	6	3	3	East	M	Fair	Fair
то559	0559	Norway maple	Acer platanoides	16	580	1	5	5	5	5	2	2	East	M	Fair	Fair
T0560	0560	Purple plum	$\begin{array}{\|l} \hline \text { Prunus cerasifera } \\ \hline \text { 'Pissardi' } \\ \hline \end{array}$	8	330	1	4	3	2	1	3	2	East	M	Fair	Poor
T0561	0561	Ash	Fraxinus excelsior	15	780	1	6	5	7	7	1	5	South	M	Fair	Fair
T0562	0562	Norway maple	Acer platanoides	14	660	1	5	5	6	7	4	3	North	M	Pagaiz4 of 73	Fair

Comments	Recommendations	Impact of Proposal	U.L.E	Cat.	RPA (m2)	RPA Radial distance (m)
Single stem compact crown on landscaped area close to stone wall.	None.	None.	${ }^{10+}$	C1	18	2
Linear hedge beyond boundary stone wall.	None.	None.	${ }^{10+}$	c^{2}	7	2
Single stem forming compact crown.	None.	None.	$10+$	c1	18	2
Single stem forming compact crown.	None.	None.	${ }^{10+}$	c1	23	3
Single stem forming compact crown.	None.	None.	${ }^{10+}$	c1	28	3
Linear group beyond boundary stone wall.	None.	None.	${ }^{10+}$	c2	28	3
Twin stem leaning in grass verge by stone boundary wall.	None.	None.	${ }^{10+}$	c1	48	4
Mixed species group comprising garden shrubs.	None.	None.	${ }^{10+}$	c2	28	3
Mature trees include oak and scots pine $c .4 \mathrm{~m}$ from wall behind fence in open grass area.	None.	None.	${ }^{40+}$	A2	254	9
Single stem forming compact crown east of wall in gras verge.	None.	None.	${ }^{20+}$	${ }^{81}$	10	2
Single stem forming compact crown east of wall in grass verge.	None.	None.	$20+$	${ }^{81}$	10	2
Single stem forming compact crown east of wall in grass verge.	None.	None.	${ }^{20+}$	${ }^{81}$	10	2
Single stem forming compact crown east of wall ingrass verge.	None.	None.	${ }^{20+}$	${ }^{81}$	10	2
Single stem forming compact crown east of wall in grass verge.	None.	None.	${ }^{20+}$	${ }^{\text {B1 }}$	10	2
Single stem forming compact crown east of wall in grass verge.	None.	None.	${ }^{20+}$	${ }^{81}$	10	2
Single stem forming compact crown east of wall in grass verge.	None.	None.	${ }^{20+}$	${ }^{31}$	10	2
Single stem forming compact crown east of wall in grass verge.	None.	None.	${ }^{20+}$	${ }^{81}$	10	2
Single stem forming compact crown east of wall in grass verge.	None.	None.	20+	${ }^{\text {B1 }}$	10	2
Single stem forming compact crown east of wall in grass verge.	None.	None.	$20+$	${ }^{81}$	10	2
Single stem forming compact crown east of wall in grass verge.	None.	None.	${ }^{20+}$	${ }^{81}$	10	2
Single stem forming tall crown.	None.	None.	${ }^{20+}$	${ }^{81}$	547	13
Single stem forming compact narrow crown.	None.	None.	$20+$	${ }^{81}$	327	10
Single stem forming compact narrow crown.	None.	None.	${ }^{20+}$	${ }^{81}$	272	9
Single stem forming compact narrow crown.	None.	None.	$20+$	${ }^{81}$	290	10
Single ivy clad stem forming spreading crown located in grass verge, prominent tree in local landscape, construction works east in private property with linear trench for foundations within $c .4 \mathrm{~m}$ of stem.	None.	None.	$40+$	${ }^{\text {A }}$	598	14
Single stem forming spreading crown from 2 m in grass verge by road.	None.	None.	$20+$	${ }^{\text {B1 }}$	102	6
Single stem froming compact crown from 3 m , in grass verge by road.	None.	None.	${ }^{10+}$	c1	28	3
Single stem forming spreading crown that touches ground, in grass verge by road.	None.	None.	${ }^{20+}$	${ }^{\text {B1 }}$	92	5
Single stem forming spreading symetric crown from 2 m , in grass verge by road, stem damage, bark stripped $c .15 \%$ of stem at 13 m north and west on main stem.	$\begin{aligned} & \text { Remove } \mathrm{c} .25 \mathrm{~m}^{2} \text { to } \\ & \text { facilitate new pedestrian } \\ & \text { crossing. } \end{aligned}$	Part removal for new pedestrian crossing.	$20+$	${ }^{81}$	150	7
Single stem assymetric crown pruning wounds to 4 m , tight to footpath.	None.	None.	${ }^{10+}$	c1	48	4
Single stem forming assymetric crown, pruning wounds to 4 m, tight to footpath.	None.	None.	${ }^{10+}$	c1	272	9
Two leaders from 3 m forming spreading crown, in grass verge by road.	None.	None.	${ }^{20+}$	${ }^{81}$	191	8

U.L.E	Useful life expectancy (yis)	
Tree No.	Tag No.	Species

Botanical Name	$\mathrm{H}(\mathrm{m})$	Stem Dia.		${ }^{\text {N }}$	Erown	pread	m)	c.c	$\underset{\substack{\text { L } \\ \text { (m) }}}{\text { L.B. }}$	L.B.D	Age	Physiological	Structural	Comments	Recommendations	Impact of Proposal	U.L.E	Cat.	RPA (m2)	RPA Radial distance (m)
Tilia sp.	7	180	1	2	2	2	2	4	3	East	SM	Fair	Fair	Single stem forming compact crown located in grass verge by stone wall.	None.	None.	$10+$	C1	14	2
Tilia sp.	7	180	1	2	2	2	2	4	3	West	SM	Fair	Fair	Felled.	None.	None.	10+	Cl_{1}	14	2
Tilia sp.	7	180	1	2	2	2	2	4	3	South	SM	Fair	Fair	Single stem forming compact crown located in grass verge by stone wall.	None.	None.	$10+$	c1	14	2
Tilia sp.	7	180	1	2	2	2	2	4	3	North	SM	Fair	Fair	Single stem forming compact crown located in grass verge by stone wall.	None.	None.	10+	C1	14	2
Tilia sp.	7	180	1	2	2	2	2	4	3	North	SM	Fair	Fair	Single stem forming compact crown located in grass verge by stone wall.	None.	None.	${ }^{10+}$	C1	14	2
Tilia sp.	7	180	1	2	2	2	2	4	3	West	SM	Fair	Fair	Single stem forming compact crown located in grass verge by stone wall.	None.	None.	$10+$	c1	14	2
Tilia sp.	7	180	1	2	2	2	2	4	3	West	sm	Fair	Fair	Single stem forming compact crown located in grass verge by stone wall	None.	None.	$10+$	C1	14	2
N/a	12	240\#	1	3		3	3	1	1	West	ем	Fair	Fair	Mixed species vegetation comprising leylandi sycamore, oak and lime east and west of stone wall.	None.	None.	$20+$	${ }^{82}$	28	3
Betula pendula	12	360	1	4	3	4	5	2	2	West	M	Fair	Fair	Two ivy clad stems forming spreading crown.	None.	None.	${ }^{10+}$	C1	55	4
Carpinus betulus	12	360	1	3	3	4	4	2	2	South	M	Fair	Fair	Single ivy clad stem forming spreading crown.	None.	None.	$\frac{20+}{20+}$	$\frac{81}{81}$	55	4
Fraxinus excelsior	14	3880	1	5	5	5	4	2	2	East	M	Fair	Fair	Single ivy clad stem forming spreading crown.	None.	None.	$\frac{20+}{20+}$	$\frac{81}{81}$	64	5
$\underset{\text { Fraxinus excelsior }}{\text { Fraxins excelsior }}$	${ }_{14}^{12}$	340 340	1	5	5 4	4	5	$\frac{6}{2}$	$\frac{6}{5}$	$\xrightarrow[\text { West }]{\text { East }}$	M	$\stackrel{\text { Fair }}{\text { Fair }}$	$\stackrel{\text { Fair }}{\text { Fair }}$	Single ive cla stem forming spreading crown. Single ivy clad stem forming spreaing crown.	None.	None.	$\frac{20+}{20+}$	$\frac{81}{81}$	55	4
Fraxinus excelsior	12	${ }^{340}$	1	5	4	4	5	2	2	West	ем	Fair	$\stackrel{\text { fair }}{ }$	Mixed species group that wraps around corner and extends east long road.	None.	None.	10+	c2	28	3
N/a	3	120\#	1	1	1	1	1	0	0	South	sm	Fair	Fair	Linear hedge that extends north behind lime trees and along boundary of property behind small stone wall and metal fence.	None.	None.	${ }^{10+}$	c2	7	2
Tilia sp.	10	260	1	3	3	3	3	1	1	South	sm	Fair	Fair	Single stem forming compact crown in grass verge.	Remove to facilitate proposal and replace as good arboricultural practice.	Removal due to new footpath and cycle lane.	10+	c1	28	3
Tilia sp.	10	260	1	3	3	3	3	1	1	South	sm	Fair	Fair	Single stem forming compact crown in grass verge.	$\begin{array}{\|c\|} \text { Remove to facilitate } \\ \text { proposal and replace as } \\ \text { good arboricicultural } \\ \text { practice. } \end{array}$	Removal due to new footpath and cycle lane.	10+	C1	28	3
Tilia sp.	10	260	1	3	3	3	3	1	1	South	sm	Fair	Fair	Single stem forming compact crown in grass verge.	$\begin{array}{\|c\|} \hline \text { Remove to facilitate } \\ \text { proposal and replace as } \\ \text { good arboricultural } \\ \text { practice. } \end{array}$	Removal due to new footpath and cycle lane.	$10+$	c1	28	3
Tilia sp.	10	260	1	3	4	3	3	1	1	South	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	$10+$	C_{1}	28	3
TTilu sp.	10	260	1		3					South				Single stem forming compact crown in grass verge.		None.	$10+$	${ }^{\text {c1 }}$	${ }^{28}$	3
Tilia sp.	10	220	1	3	4	3	3	1	1	East	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	${ }_{10+}$	C_{1}	23	3
Tilia sp.	10	220	1	3	4	3	3	1	1	South	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	${ }_{10+}$	C_{1}	23	3
Tilia sp.	10	220	1	3	4	3	3	1	1	West	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	10+	C_{1}	${ }^{23}$	3
Tilia sp.	10	220	1	3	4	3	3	1	1	South	SM	fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	${ }_{10+}$	Cl_{1}	23	3
Tilia sp.	10	220	1	3	4	3	3	1	1	West	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	10+	C 1	23	3
Tilia sp.	10	220	1	3	4	3	3	1	1	South	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	10+	${ }^{\text {c1 }}$	23	3
Tilia sp.	10	220	1	3	4	3	3	1	1	North	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	$10+$	C_{1}	23	3
Tilia sp.	10	220	1	3	4	3	3	1	1	South	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	10+	${ }^{\text {c1 }}$	${ }^{23}$	3
Tilias sp.	10	220	1	3	4	3	3	1	1	South	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	10+	Cl^{1}	23	3
Tilia sp.	10	220	1	3	3	3	3	1	1	East	SM	Fair	fair	Single stem forming compact crown in grass verge.	None.	None.	${ }^{10+}$	C_{1}	23	3
Tilia sp.	10	220	1	3	3	3	3	1	1	West	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	$10+$	$\mathrm{Cl}^{\text {c }}$	23	3
Tilia sp.	10	220	1	3	4	3	3	1	1	West	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	10+	${ }^{\text {c1 }}$	${ }^{23}$	3
Tilias sp.	10	220	1	3	3	3	3	1	1	West	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	${ }_{10}+$	C_{1}	23	3
Tilia sp.	10	220	1	3	4	3	3	1	1	South	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	${ }^{10+}$	${ }^{\text {c1 }}$	23	3
Tilias sp.	10	220	1	3	4	3	3	1	1	North	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	10+	C_{1}	${ }^{23}$	3
Tilias sp.	10	220	1	3	4	3	3	1	1	North	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	$10+$	C_{1}	23	3
Tilias sp.	10	220	1	3	4	3	3	1	1	South	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	${ }_{10+}+$	C_{1}	23	3
Tilia sp.	10	220	1	3	4	3	3	1	1	South	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	$10+$	Cl^{1}	${ }^{23}$	3
Tilias sp.	10	220	1	3	4	3	3	1	1	West	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	10+	c_{1}	23	3
Salix caprea	10	220	1	3	4	3	3	1	1	South	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	10+	Cl^{1}	23	3
N/a	14	240\#	1	3	4	3	3	2	2	East	SM	Fair	Fair	Mixed species group comprising ash, sycamore and norway maple that is located behind stone wall.	None.	None.	$10+$	c2	28	3
Corylus ovellana	4	120\#	1	1	1	1	1	0	0	East	r	Pagair6 of 73	Fair	Linear hedge comprising hazel and hawthorn in central reservation that divides lanes.	None.	None.	${ }^{10+}$	c2	7	2

Reference	20.070.01	
Survey Dates	177h- 31st August 2020	
	30th November - -2nd December 2020	
	29th - 30th November 2021	
	20it-21 st March 2023	
Abreviation	Deitinition	Age
H	Height (m)	
Stem Dia.	Stem diameter (mm)	
c.C	Crown clarance (m)	
L.B.H	Lowest branch height (m)	M
L.B.D	Direction of lowest branch	ом
U.L.E	Useful life expectancy (yrs)	VIA

Tree No.	Tag No.	Species	Botanical Name	$\mathrm{H}(\mathrm{m})$	Stem Dia.	No of Stems		${ }_{\text {Crown S }}$	Spread	${ }^{(m)}$	${ }_{\text {(m) }}^{\text {c.C }}$		L.B.D	Age	Physiological ${ }^{\text {S }}$	Structural	Comments	Recommendations	Impact of Proposal	U.L.E	Cat.	RPA (m2)	RPA Radial distance (m)
T0633	0633	Lime	Tilia s.	8	220	1	3	${ }^{3}$	3	3	1	1	East	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	10+	Cl_{1}	23	${ }_{3}$
T0634	0634	Lime	Tilla sp.	8	220	1	3	3	3	3	1	1	East	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	$10+$	${ }^{\text {c1 }}$	23	3
T0635	0635	Lime	Tilias sp.	8	220	1	3	3	3	3	1	1	East	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	${ }^{10+}$	${ }^{\text {c1 }}$	23	3
T0636	0636	Lime	Tilics sp.	8	220	1	3	3	3	3	1	1	East	SM	fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	$10+$	${ }_{\text {c1 }}$	23	3
T0637	0637	Lime	Tilia sp.	8	220	1	3	,	3	3	1	1	South	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	$1{ }^{10+}$	${ }^{1}$	23	3
T0638	0638	Lime	Tilia sp.	8	220	1	3	3	3	3	1	1	East	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	${ }^{10+}$	${ }^{\text {c1 }}$	${ }^{23}$	3
T0639	0639	Lime	Tilias sp.	8	230	1	3	3	3	3	1	1	East	SM	Fair	Fair	Single stem forming compaat crown in grass verge.	None.	None.	${ }^{10+}$	c_{1}	23	3
T0640	0640	Lime	Tiliasp.	8	260	1	3	3	3	3	1	1	East	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	10+	${ }^{\text {c1 }}$	28	3
T0641	0641	Lime	Tilias sp.	8	240	1	3		3	3	1	1	North	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	10+	${ }^{1}$	28	3
To642	0642	Lime	Tiliasp.	8	210	1	3	3	3	3	1	1	South	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	$10+$	c_{1}	18	2
To643	0643	Lime	Tilia sp.	8	210	1	3	3	3	3	1	1	South	sM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	${ }^{10+}$	Cl_{1}	18	2
T0644	0644	Lime	Tilias sp.	8	240	1	3	3	3	3	1	1	West	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	${ }^{10+}$	${ }^{\text {c1 }}$	28	3
T0645	0645	Lime	Tilias sp.	8	240	1	3	3	3	3	1	1	South	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	${ }^{10+}$	${ }^{\text {c1 }}$	28	3
${ }^{\text {T0646 }}$	0646	Lime	Tilia sp.	8	280	1	3	3	3	3	1	1	South	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	${ }^{10+}$	${ }^{\text {c1 }}$	34	3
T0647	0647	Lime	Tilias sp.	8	260	1	3	3	3	3	1	1	South	sM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	10+	C_{1}	${ }^{28}$	3
To648	0648	Lime	Tilias s.	8	260	1	3	3	3	3	1		South	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	${ }^{10+}$	C_{1}	28	3
т0649	0649	Lime	Tilias sp.	8	240	1	3	3	3	2	1	1	West	sm	Fair	Fair	Single stem forming compact crown in grass verge.	$\begin{aligned} & \text { Remove to facilitate } \\ & \text { proposal and replace as } \\ & \text { good arboricultural } \\ & \text { practice. } \end{aligned}$	$\begin{array}{c}\text { Removal due to new footpath } \\ \text { and cycle lane. }\end{array}$	${ }^{10+}$	${ }^{1}$	28	3
To650	0650	Lime	Tilia sp.	8	240	1	3	3	3	2	1	1	West	sm	Fair	Fair	Single stem forming compact crown in grass verge.		Removal due to new footpath and cycle lane.	${ }^{10+}$	c1	28	3
T0651	0651	Lime	Tilias sp.	8	220	1	3	3	3	3	1	1	West	sm	Fair	Fair	Single stem forming compact crown in grass verge.	$\begin{array}{\|c\|} \text { Remove to facilitate } \\ \text { proposal and replace as } \\ \text { good arboriciltural } \\ \text { practice. } \end{array}$	Removal due to new footpath and cycle lane.	${ }^{10+}$	${ }^{\text {c1 }}$	${ }^{23}$	3
T0652	0652	Lime	Tilia sp.	8	220	1	3	3	3	3	3	3	South	SM	Fair	Fair	Two leaders from 3m forming spreading crown.	None.	None.	$2{ }^{20+}$	${ }^{81}$	${ }^{23}$	3
T0653	0653	Lime	Trilas sp.	8	250	1	4	3	3	3	3	3	West	SM	Fair	Fair	Two leaders from 3m forming spreading crown.	None.	None.	$2{ }^{20+}$	${ }^{81}$	28	3
T0654	0654	Rowan	Sorbus aucuparia	8	290	1	4	4	4	4	4	3	East	ем	6ood	Fair	Single stem forming spreading crown from 3 m .	None.	None.	$2{ }^{20}$	${ }^{81}$	41	4
To655	0655	Rowan	Sorbus oucuparia	7	230	1	3	3	3	3	5	4	South	EM	Fair	Fair	Single stem forming spreading crown from 4 m .	None.	None.	${ }^{10+}$	Cl_{1}	23	3
To656	0656	Pear	Pyrus sp.	12	300	1	3	3	3	3	4	4	East	M	Fair	Fair	Two leaders from 3 m forming compact crown.	None.	None.	$10+$	c_{1}	41	4
T0657	0657	Rowan	Sorbus aucuparia	7	220	1	2	2	2	2	4	3	East	ем	Fair	Fair	Three leaders from 3 m forming compact crown.	None.	None.	${ }_{10+}$	${ }^{1}$	23	3
T0658	0658	Rowan	Sorbus oucuparia	7	220	1	3	3	3	3	4	3	East	ем	Fair	Fair	Two leaders from 3 m forming compact crown.	None.	None.	${ }^{10+}$	${ }^{1}$	23	3
T0659	0659	Rowan	Sorbus aucuparia	7	210	1	2	2	2	2	4	2	East	ем	Poor	Fair	Two leaders from 3 m forming compact crown.	Fell and replace as good arboricultural practice (<3 months)	None.	<10	u	18	2
T0660	0660	Rowan	Sorbus oucuparia	8	220	1	3	3	3	3	4	3	East	EM	Fair	Fair	Single stem forming spreading crown from 3 m .	None.	None.	$20+$	${ }_{81}$	23	3
T0661	0661	sycamore	${ }_{\text {Pser }}^{\text {Pceudoplatanus }}$	12	300	1	4	4	4	4	4	3	East	sm	Fair	Fair	Single stem forming spreading crown from 3 m , in grass verge by pavement.	None.	None.	${ }^{20+}$	${ }^{81}$	41	4
T0662	0662	Hormbeam	Carrinus betulus	8	220	1	2	2	2	2	1	1	South	SM	Fair	Fair	Linear group of 6 west of footbridge in grass verge.	None.	None.	$2{ }^{20+}$	${ }^{82}$	23	3
T0663	0663	Hormbeam	Carpinus betulus	8	220	1	2	2	2	2	1	1	South	SM	Fair	Fair	Linear group of 6 west of footridge in grass verge.	None.	None.	$2{ }^{20+}$	${ }^{82}$	23	3
T0664	0664	Hormbeam	Carpinus betulus	8	240	1	2	2	2	2	1	1	South	SM	Fair	Fair	Linear group of 6 west of footbridge in grass verge.	None.	None.	$2{ }^{20+}$	${ }^{82}$	${ }^{28}$	3
T0665	0665	Hormbeam	Carpinus betulus	8	240	1	2		2	2	1	1	South	SM	Fair	Fair	Linear group of 6 west of footbridge in grass verge.	None.	None.	$2{ }^{20+}$	$\frac{82}{}$	28	3
T0666	0666	Hormbeam	Carpinus betulus	8	220	1	2	2	2	2	1	1	East	SM	Fair	Fair	Linear group of 6 west of footbridge in grass verge.	None.	None.	$2{ }^{20+}$	${ }^{82}$	23	3
${ }^{60667 *}$	0667	Mixed Species Group	N/a	14	${ }^{320 \#}$	1	3	3	3	3	3	2	East	ем	Fair	Fair	Mixed species group east of footbridge that wraps around corner of junction.	Remove c.479m² (x2 ocations) to facilitate proposal and replace as good arboricultural practice.	Partr removal due to cycle lane.	${ }^{20+}$	${ }^{82}$	48	4
T0668	0668	Lime	Tilia sp.	8	220	1	2	2	2	2	1	2	East	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	$\underline{20+}$	${ }^{81}$	23	
T0669	0669	Lime	Tilia sp.	8	${ }^{220}$	1	2	2	2	2	1	2	South	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	$2{ }^{20+}$	${ }^{81}$	${ }^{23}$	3
T0670	0670	Lime	Tilias sp.	8	220	1	2	2	2	2	1	2	East	SM	Fair	Fair	Single stem forming compaat crown in grass verge.	None.	None.	$2{ }^{20+}$	${ }^{81}$	${ }^{23}$	3
T0671	0671	Lime	Tilias sp.	8	220	1	2	2	2	2	1	2	East	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	$\frac{20+}{20+}$	$\frac{81}{81}$	${ }^{23}$	3
T0672	0672	Lime	Tilias sp.	8	220	1	2	2	2	2	1	2	East	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	$2{ }^{20+}$	${ }^{81}$	${ }^{23}$	3
T0673	0673	Lime	Tiliasp.	11	300	1	3	4	4	4	4	3	West	SM	Fair	Fair	Single stem forming spreading crown in grass verge, overhangs	None.	None.	$20+$	${ }^{81}$	41	4
T0674	0674	Lime	Tilia sp.	11	260	1	3	4	4	4	1	3	west	sm	Fair	Fair	Single stem forming spreading crown in grass verge by road.	None.	None.	${ }^{20+}$	${ }^{81}$	28	3
T0675	0675	Lime	Tilias sp.	9	250	1	3	3	3	3	2	3	South	sm	Pagair of 7β	Fair	Single stem forming spreading crown in grass verge by road.	None.	None.	${ }^{20+}$	${ }^{\text {B1 }}$	${ }^{28}$	3

Tree No.	Tag No.	Species
T0676	0676	Lime
T0677	0677	Lime
T0678	0678	Lime
т0679	0679	Lime
T0680	0680	Lime
To681	0681	Lime
T0682	0682	Lime
T0683	0683	Lime
T0684	0684	Lime
T0685	0685	Lime
T0686	0686	Lime
T0687	0687	Lime
T0688	0688	Lime
T0689	0689	Lime
T0690	0690	Lime
T0691	0691	Lime
T0692	0692	Lime
T0693	0693	Lime
T0694	0694	Lime
T0695	0695	Lime
T0696	0696	Lime
T0697	0697	Lime
T0698	0698	Lime
T0699	0699	Lime
T0700	0700	Lime
T0701	0701	Lime
T0702	0702	Lime
T0703	0703	Lime
T0704	0704	Lime
T0705	0705	Lime
T0706	0706	Lime
T0707	0707	Lime
T0708	0708	Lime
T0709	0709	Lime
T0710	0710	Lime
T0711	0711	Lime
T0712	0712	Lime
T0713	0713	Lime
T0714	0714	Lime
T0715	0715	Fastigiate hornbeam
т0716	0716	Fastigiate hornbeam
T0717	0717	Fastigiate hornbeam
T0718	0718	Fastigiate hornbeam
T0719	0719	Fastigiate hornbeam
T0720	0720	Fastigiate hornbeam
T0721	0721	Fastigiate hornbeam
T0722	0722	Fastigiate hornbeam

Botanical Name	$\mathrm{H}(\mathrm{m})$	Stem	No of		own	read		c.C.	.B.H	L.B.D	Age	Physiological	Structural	Comments	Recommendations	Impact of Proposal	U.L.E	Cat.	RPA (m2)	RPA Radial
Carpinus betulus	12	Lia	1	N	3	5	w	(m)	(m)	South	SM	Fair	Fair	Single stem compact crown.	None.	None.	$10+$	C1	18)
fastigita																				
Carpinus betulus fastigiata	12	200	1	3	${ }^{3}$	3	3	0	1	West	SM	Fair	Fair	Single stem compact crown.	None.	None.	${ }^{10+}$	c1	18	2
$\begin{aligned} & \text { Carpinus betulus } \\ & \text { fastigiata } \end{aligned}$	12	200	1	3	3	3	3	0	1	West	SM	Fair	Fair	Single stem compact crown.	None.	None.	10+	c1	18	2
$\begin{aligned} & \text { Carpinus betulus } \\ & \text { fastigiata } \end{aligned}$	12	200	1	3	3	3	3	0	1	West	SM	Fair	Fair	Single stem compact crown.	None.	None.	${ }^{10+}$	C1	18	2
	12	200	1	3	3	3	3	0	1	South	SM	Fair	Fair	Single stem compact crown.	None.	None.	${ }^{10+}$	C1	18	2
$\begin{aligned} & \begin{array}{l} \text { cascrinua } \\ \text { Caspinus betulus } \end{array} \\ & \text { fatiata } \end{aligned}$	12	200	1	3	3	3	3	0	1	South	sm	Fair	Fair	Single stem compact crown.	None.	None.	10+	C1	18	2
N/a	12	240\#	1	3	3	3	3	3	3	South	sm	Fair	Fair	Mixed species group comprisisg ash, sycamore, lime and	None.	None.	$10+$	c2	28	3
N/a	12	240\#	1	3	3	3	3	3	2	South	em	Fair	Fair	Mixed species group comprising ash, sycamore, lime and norway maple behind stone wall.	Remove $\mathrm{c} .109 \mathrm{~m}^{2}$ to facilitate proposal and replace as good arboricultural practice	Part removal due to new footpath and cycle lane.	${ }^{10+}$	c2	28	3
Corylus avellana	3	110	1	2	2	2	2	0	0	South	r	Fair	Fair	Linear hedge in central reservation that divides lanes.	None.	None.	${ }^{10+}$	c2	5	1
N/a	15	340\#	1	3	3	3	3	4	4	South	SM	Fair	Fair	Mixed species group comprising sycamore, ash and norway maple behind stone wall.	None.	None.	${ }^{20+}$	B2	55	4
Corylus avellana	3	110	1	2	2	2	2	0	0	South	γ	Fair	Fair	Linear hedge in central reservation that divides lanes.	None.	None.	$10+$	c2	5	1
$\begin{aligned} & \text { Cupressus } \\ & \text { macrocarpa } \end{aligned}$	15	400\#	1	4	4	4	4	4	1	West	em	Fair	Fair	Linear group behind stone wall, roots visible beneath footpath surface.	None.	None.	${ }^{10+}$	c2	72	5
N/a	15	340\#	1	3	3	3	3	4	4	East	EM	Fair	Fair	Mixed species group behind stone wall.	None.	None.	10+	c^{2}	55	4
Carpinus betulus	8	220	1	3	3	3	3	3	3	South	SM	Fair	Fair	Single stem symetric crown from 3 in in central reservation dividing lanes.	None.	None.	10+	c1	23	3
Carpinus betulus	10	240	1	4	4	4	4	3	3	South	SM	Fair	Fair	Single stem symetric crown from 3 m in central reservation dividing lanes.	None.	None.	10+	c1	28	3
Carpinus betulus	9	200	1	3	3	3	3	3	3	South	SM	Fair	Fair	Single stem symetric crown from 3 m in central reservation dividing lanes.	None.	None.	${ }^{10+}$	C1	18	2
Carpinus betulus	8	160	1	3	3	3	3	2	3	South	SM	Fair	Fair	Single stem symetric crown from $3 m$ in central reservation dividing lanes.	None.	None.	$10+$	c1	10	2
Carpinus betulus	7	150	1	3	3	3	3	3	3	South	SM	Fair	Fair	Single stem symetric crown from $3 m$ in central reservation dividing lanes.	None.	None.	$10+$	C1	10	2
Carpinus betulus	6	140	1	3	3	3	3	3	3	West	SM	Fair	Fair	Single stem symetric crown from 3 m in central reservation dividing lanes.	None.	None.	$10+$	C1	10	2
Carpinus betulus	6	120	1	3	3	3	3	3	3	South	SM	Fair	Fair	Single stem symetric crown from 3 m in central reservation dividing lanes.	None.	None.	${ }^{10+}$	c1	7	2
Carpinus betulus	8	160	1	3	3	3	3	3	3	South	SM	Fair	Fair	Single stem symetric crown from $3 m$ in central reservation dividing lanes.	None.	None.	10+	C1	10	2
Carpinus betulus	8	160	1	3	3	3	3	3	3	West	SM	Fair	Fair	Single stem symetric crown from 3 m in central reservation dividing lanes.	None.	None.	${ }^{10+}$	C1	10	2
Carpinus betulus	8	180	1	3	3	3	3	3	3	East	SM	Fair	Fair	Single stem symetric crown from 3 m in central reservation dividing lanes.	None.	None.	${ }^{10+}$	c1	14	2
Carpinus betulus	8	180	1	3	3	3	3	3	3	East	SM	Fair	Fair	Single stem symetric crown from 3 m in central reservation dividing lanes.	None.	None.	${ }^{10+}$	C1	14	2
N/a	12	340\#	1	3	3	3	3	4	4	South	ем	Fair	Fair	Mixed species group behind stone wall.	None.	None.	10+	c^{2}	55	4
Abies spp.	14	650\#	1	5	5	5	5	4	4	East	M	Fair	Fair	Single stem forming spreading crown from 4 m behind stone wall.	None.	None.	$20+$	${ }^{81}$	191	8
N/a	12	340\#\#	1	3	3	3	3	4	4	East	em	Fair	Fair	Mixed species group behind stone wall.	None.	None.	$10+$	c2	55	4
${ }^{\text {Abies spp. }}$	18	580\#	1	5	5	5	5	3	3	South	M	Fair	Fair	Single stem forming spreading crown from 3 m behind stone wall.	None.	None.	${ }^{20+}$	${ }^{81}$	150	7
Pinus sylvestris	18	480\#	1	5	6	5	5	8	8	South	M	Fair	Fair	Single stem forming spreading crown behind stone wall.	None.	None.	$20+$	${ }^{81}$	102	6
Pinus sylvestris	17	480\#	1	5	6	6	6	7	8	East	M	Fair	Fair	Single stem forming spreading crown behind stone wall.	None.	None.	$20+$	${ }^{1} 1$	102	6
N/a	15	3400	1	4		4	4		4	South	EM	Fair	Fair	Mixed species group behind stone wall.	None.	None.	${ }_{20+}^{20+}$	${ }^{82}$	55	4
N/a	14	3604	1		3	3	3	4	4	South	ем	Fair	Fair	Mixed species group behind stone wall.	None.	None.	$2{ }^{20+}$	82	55	+
Acer pseudoplatanus	12	280	1	5	5	5	5	3	2	East	sm	$\begin{gathered} \text { Fair } \\ \text { Page } 29 \text { of } 7 \beta \end{gathered}$	$\beta^{\text {Fair }}$	Single stem forming spreading crown from 2 m in landscaped verge by footpath	Remove to facilitate proposal and replace as good arboricultural practice.	Removal due to road widening.	10+	c1	${ }^{34}$	3

\ldots

G- Group H-Hedgerow W- Woodland P-Tree is on private land ${ }^{\text {Tree is }}$ is not on topographical survey and therfore position remains indicitive \# Measurements estimated (tree is inaccessible)

Tree No.	Tag No.	Species	Botanical Name	H(m)	$\begin{array}{\|c} \hline \text { Stem } \\ \text { Dia. } \end{array}$	$\begin{array}{\|l\|} \hline \text { No of } \\ \text { Stems } \end{array}$		${ }_{\text {Crown S }}^{\text {E }}$	spread	${ }^{(m)}$ w		$\begin{gathered} \text { L.B.H. } \\ (\mathrm{m}) \\ \hline \end{gathered}$	L.B.D	Age	Physiological	Structural	Comments	Recommendations	Impact of Proposal	U.L.E	Cat.	RPA (m2)	RPA Radial distance (m)
60776* ${ }^{\text {P }}$		Mixed Species Group	N/a	15	340\#	1	3	3	3	3	4	4	South	ем	Fair	Fair	Mixed species group comprising sycamore, norway maple and ash that extends to junction.	Remove $1127 \mathrm{~m}^{2}$ to facilitate proposal and replace as good arboricultural practice	Part removal due to road widening.	${ }^{20+}$	82	55	4
6077	077	Lime	Tilia sp.	10	360	1	4	4	4	4	4	3	East	M	Fair	Fair	Linear group of 5 lime in grass verge by road.	$\begin{aligned} & \text { Remove } \mathrm{c} .130 \mathrm{~m}^{2} \text { to } \\ & \text { facilitate proposal and } \\ & \text { replace as good } \\ & \text { arboricultural practice. } \end{aligned}$	Part removal due to road widening.	${ }^{20+}$	${ }^{82}$	55	4
60778* ${ }^{\text {P }}$		Mixed Species Group	N/a	12	280\#	1	3	3	3	3	4	3	South	ем	Fair	Fair	Mixed species group comprising birch and sycamore behind stone wall.	None.	None.	10+	c2	34	3
т079	0779	Pear	Pyrus sp.	10	240	1	2	2	2	2	3	3	South	SM	Fair	Fair	Single stem forming compact crown from 3 m , in grass verge.	None.	None.	${ }^{20+}$	${ }^{81}$	28	3
T0780	0780	Prunus	Prunus sp.	8	260	1	2	2	2	2	3	3	North	sm	Fair	Fair	Single stem forming compact crown from 3 m , in grass verge.	None.	None.	$10+$	c1	28	3
T0781	0781	Prunus	Prunus sp.	6	180	1	2	3	2	2	3	3	Esast	SM	Fair	Fair	Single stem forming compact crown in grass verge.	None.	None.	${ }^{10+}$	${ }^{\text {c1 }}$	14	2
т0782	0782	Prunus	Prunus sp.	8	370	1	3	4	3	2	3	3	South	M	Fair	Fair	Single stem forming compact crown in grass verge.	$\begin{array}{\|c\|} \hline \text { Remove to facilitate } \\ \text { proposal and rellace as } \\ \text { good arboricultural } \\ \text { practice. } \end{array}$	Removal due to road widening.	10+	${ }^{1}$	64	5
т0783	0783	Norway maple	Acer platanoides	10	450	1	3	4	5	5	4	3	South	M	Fair	Fair	Single stem forming spreading crown from 4 m in grass verge.	None.	None.	${ }^{20+}$	${ }^{81}$	92	5
T0784	0784	Whitebeam	Sorbus aria	8	360	1	5	4	4	3	3	3	West	M	Fair	Fair	$\begin{array}{c}\text { Multistem from } 2 m \text { forming merged canopy with neighbouring } \\ \text { tree. }\end{array}$	None.	None.	$10+$	c1	55	4
60785* ${ }^{\text {P }}$	0785	Mixed Species Group	N/a	${ }^{12}$	280	1	3	3	3	3	4	3	East	ем	Fair	Fair	Mixed species group comprising yew, ash, norway maple and sycamore at junction.	Remove $\mathrm{c} .313 \mathrm{~m}^{2}$ to facilitate proposal and replace as good arboricultural practice	Part removal due to new bus stop.	${ }^{10+}$	c2	${ }^{34}$	3
60786* ${ }^{\text {P }}$		Mixed Species Group	N/a	12	240\#	1	3	3	3	3	4	3	South	ем	Fair	Fair	$\begin{array}{c}\text { Mixed species group comprising various small garden trees and } \\ \text { shrubs behind stone wall. }\end{array}$ sing sem	None.	None.	$10+$	c2	28	3
60787* ${ }^{\text {P }}$		sycamore	Acer pseudoplatanus	14	440\#	1	4	4	4	4	4	3	East	M	Fair	Fair	Single stem forming spreading crown from 4 m behind stone wall.	None.	None.	${ }^{20+}$	${ }^{81}$	92	5
T0788* ${ }^{\text {P }}$		Deodar cedar	Cedrus deodara	10	480\#	1	5	4	4	4	4	2	South	M	Fair	Fair	Single stem, $c .1 \mathrm{l}$ above pavement in retaining wall.	None.	None.	${ }^{20+}$	${ }^{\text {B1 }}$	102	6
т0789* ${ }^{\text {P }}$		Deodar cedar	Cedrus deodara	10	600\#	1	5	4	4	4	4	2	West	M	Fair	Fair	Single stem, c .1 m above pavement in retaring wall.	None.	None.	${ }^{20+}$	${ }^{81}$	163	7
T0790* P		Deodar cedar	Cedrus deodara	10	440\#	1	5	4	4	4	4	2	West	M	Fair	fair	Single stem, c.1m above pavement in retaring wall.	None.	None.	${ }^{20+}$	${ }^{81}$	92	5
To791* ${ }^{\text {P }}$		Deodar cedar	Cerus deodara	8	440\#	1	5	4	4	4	4	1	South	M	Fair	Fair	Two stems from $1 \mathrm{~m}, \mathrm{c}$.1m above pavement on retaining wall.	None.	None.	$20+$	${ }^{81}$	92	5
T0792* ${ }^{\text {P }}$		Deodar cedar	Cerrus deodara	8	440\#	1	5	4	4	4	4	2	East	M	Fair	Fair	Single stem, c.1m above pavement on retaining wall.	None.	None.	${ }^{20+}$	${ }^{81}$	92	5
T0793	0793	Horrbeam	Carpinus betulus	8	240	1	3	3	3	3	4	3	West	SM	Fair	Fair	Single stem forming symetric crown from $3 m$ in central reservation.	None.	None.	${ }^{20+}$	${ }^{\text {B1 }}$	28	3
т0794	0794	Hormbeam	Carpinus betulus	8	240	1	3	3	3	3	4	3	West	sm	Fair	Fair	Single stem forming symetric crown from 3 m in central reservation.	None.	None.	$20+$	${ }^{\text {B1 }}$	28	3
T0795	0795	Horrbeam	Carpinus betulus	8	240	1	3	3	3	3	4	3	East	SM	Fair	Fair	Single stem forming symetric crown from 3 m in central reservation.	None.	None.	${ }^{20+}$	${ }^{81}$	28	3
T0796	0796	Hormbeam	Carpinus betulus	8	210	1	3	3	3	3	4	3	South	sm	Fair	Fair	Single stem forming symetric crown from $3 m$ in central	None.	None.	${ }^{20+}$	${ }^{81}$	18	2
T0797	0797	Hornbeam	Carpinus betulus	8	220	1	3	3	3	3	4	3	East	sm	Fair	Fair	Single stem forming symetric crown from 3 m in central	None.	None.	${ }^{20+}$	${ }^{81}$	23	3
т0798	0798	Hormbeam	Carpinus betulus	8	240	1	3	3	3	3	4	3	East	sm	Fair	Fair	Single stem forming symetric crown from $3 m$ in central reservation.	None.	None.	${ }^{20+}$	${ }^{\text {B1 }}$	28	3
T0799	0799	Hormbeam	Carpinus betulus	8	220	1	3	3	3	3	4	3	East	SM	Fair	Fair	Single stem forming symetric crown from $3 m$ in central reservation.	None.	None.	${ }^{20+}$	${ }^{81}$	23	3
T0800	0800	Hormbeam	Carpinus betulus	8	220	1	3	3	3	3	4	3	East	sm	Fair	Fair	Single stem forming symetric crown from 3 m in central	None.	None.	$20+$	${ }^{31}$	${ }^{23}$	3
T0801	0801	Hormbeam	Carpinus betulus	8	230	1	3	3	3	3	4	3	East	sm	Fair	Fair	Single stem forming symetric crown from $3 m$ in central reservation.	None.	None.	$20+$	${ }^{\text {B1 }}$	23	3
${ }^{60802 *}{ }^{\text {P }}$		Mixed Species Group	N/a	8	220\#	1	2	2	2	2	4	3	South	sm	Fair	Fair	Mixed species vegetation comprising cherry, crimson king and kohuhu behind stone wall in private gardens.	None.	None.	${ }^{10+}$	c2	${ }^{23}$	3
$60803^{*} \mathrm{P}$		Himalavan Birch	Betula utilis	8	240 H	1	3	3	3	3	4	3	South	ем	Sair	Fair	Linear group of 3 behind stone wall.	None.	None.	${ }_{10+}$	c2	28	3

VIA (Veteran:Ancieient) Ancient characteristics or or conservation value			

G-Group H-Hedgerow W-Woodland P-Tree is on private land TTree is not on topographical survey and therfore position remains indicitive $\#$ Measurements estimated (tree is inaccessible) 2

Tree No.	Tag No.	Species	Botanical Name	H(m)	$\begin{gathered} \text { Stem } \\ \text { Dia. } \end{gathered}$	$\begin{array}{\|l\|} \hline \text { No of } \\ \text { Stems } \end{array}$	${ }^{\text {N }}$	Crown	$\stackrel{\text { pread }}{\text { s }}$		$\begin{array}{\|l\|} \hline \mathrm{c} . \mathrm{C} \\ (\mathrm{~m}) \end{array}$	$\begin{gathered} \text { L.B.H } \\ (\mathrm{m}) \end{gathered}$	L.B.D	Age	Physiological	Structural	Comments	Recommendations	Impact of Proposal	U.L.E	Cat.	RPA (m2)	RPA Radial distance (m)
T0838	0838	Hornbeam	Carpinus betulus	10	240	1	3	3	3	3	4	3	South	sm	Fair	Fair	Single stem forming symetric crown in central reservation.	None.	None.	$20+$	${ }^{81}$	28	3
то839	0839	Hornbeam	Carpinus betulus	10	240	1	3	3	3	3	4	3	East	sm	Fair	Fair	Single stem forming symetric crown in central reservation.	None.	None.	$20+$	${ }^{\text {B1 }}$	28	3
T0840	0840	Hormbeam	Carpinus betulus	10	240	1	3	3	3	3	4	3	West	sm	Fair	Fair	Single stem forming symetric crown in central reservation.	None.	None.	${ }^{20+}$	${ }^{81}$	28	3
T0841	0841	Hornbeam	Carpinus betulus	10	240	1	3	3	3	3	4	3	west	sm	Fair	Fair	Single stem forming symetric crown in central reservation.	None.	None.	$20+$	${ }^{81}$	28	3
T0842	0842	Hornbeam	Carpinus betulus	10	240	1	3	3	3	3	4	3	South	sm	Fair	Fair	Single stem forming symetric crown in central reservation.	None.	None.	${ }^{20+}$	${ }^{81}$	28	3
T0843	0843	Hornbeam	Carpinus betulus	10	240	1	3	3	3	3	4	3	West	sm	Fair	Fair	Single stem forming symetric crown in central reservation.	None.	None.	${ }^{20+}$	${ }^{\text {B1 }}$	28	3
то844	0844	Hornbeam	Carpinus betulus	10	240	1	3	3	3	3	4	3	East	sm	Fair	Fair	Single stem forming symetric crown in central reservation.	None.	None.	${ }^{20+}$	${ }^{81}$	28	3
60885* P	0845	Mixed Species Group	N/a	15	330	1	3	3	3	3	4	2	South	ем	Fair	Fair	Mixed species group comprising sycamore and ash that divides N11 from slip road.	Remove c. $802 \mathrm{~m}^{2}$ to facilitate proposal and replace as good arboricultural practice.	Part removal due to road widening and new bus stop.	${ }^{10+}$	c2	48	4
60886* P		Mixed Species Group	N/a	18	310\#	1	3	3	3	3	4	2	South	ем	Fair	Fair	Mixed species group predominantly comprising leylandii that extends north behind stone wall.	None.	None.	$10+$	c2	${ }^{41}$	4
${ }^{608877^{*} P}$		Leylandii	x Cupressocyparis leylandii	14	380\#	1	3	3	3	3	3	2	South	EM	Fair	Fair	Linear group that extend north behind stone wall.	None.	None.	${ }^{10+}$	c2	${ }^{64}$	5
T0848	0848	Horse chestrut	Aesculus hippocastanum	14	1250	1	4	8	8	8	2	8	South	M	Good	Fair	Single stem forming spreading crown from 4 m in grass verge west of footpath, construction has already commenced in this area of site.	$\begin{aligned} & \text { Crown raise to } 2.4 \mathrm{~m} \text { over } \\ & \text { footpath (<3 months). } \end{aligned}$	None.	${ }^{40+}$	A1	707	15
т0849	0849	Horse chestrut	Aesculus hippocastanum	14	1080	1	8	8	4	8	2	4	West	M	Good	Fair	Single stem forming spreading crown from 4 m in grass verge west of footpath, construction has already commenced in this area of site.	$\begin{array}{c}\text { Crown raise to } 2.4 \mathrm{~m} \text { over } \\ \text { footpath }(<3 \text { months). }\end{array}$	None.	${ }^{40+}$	A1	523	13
т0850	0850	Ash	Fraxinus excelsior	8	250	1	5	7	5	5	2	3	East	sm	Fair	Fair	Single stem spreading crown from 3 m in grass verge west of footpath, construction has already commenced in this area.	Crown raise to 2.4 m over footpath (<3 months).	None.	${ }^{20+}$	${ }^{81}$	28	3
T0851	0851	Ash	Fraxinus excelsior	9	660	1	8	9	8	8	2	2	East	M	Good	Fair	Spreading crown from 2 m .	Crown raise to 2.4 m over footpath (<3 months).	None.	${ }^{40+}$	${ }^{\text {A1 }}$	191	8
T0852	0852	Atlas Cedar	Cedrus attantica	10	300	1	3	3	3	3	2	2	South	ем	Fair	Fair	Single stem forming compact crown from 2 m .	Crown raise to 2.4 m over footpath (<3 months).	None.	${ }^{20+}$	${ }^{81}$	${ }^{41}$	4
T0853	0853	Alder	Alnus glutinosa	8	220	1	2	2	2	2	1	1	South	sm	Fair	Fair	Single stem forming compact crown from 1 m .	Crown raise to 2.4 m over footpath (<3 months).	None.	${ }^{10+}$	C1	23	3
т0854	0854	Fastigiate oak	$\begin{aligned} & \text { Quercus robur } \\ & \text { fastigiata } \end{aligned}$	8	220	1	2	2	2	2	1	1	East	sM	Fair	Fair	Single compact crown in grass verge between cycle path and road.	Crown raise to 2.4 m over footpath (<3 months).	None.	${ }^{10+}$	Cl^{1}	${ }^{23}$	3
T0855	0855	Alder	AInus glutinosa	12	480	1	4	5	5	4	3	2	South	m	Fair	Fair	Single stem forming spreading crown from 3 m in grass verge.	None.	None.	$20+$	${ }^{81}$	102	6
T0856	0856	Lime	Tilias sp.	10	300	1	5	5	4	5	3	2	South	ем	Fair	Fair	Single stem forming spreading crown in grass verge.	None.	None.	$20+$	${ }^{\text {B1 }}$	41	4
T0857	0857	Balsam poplar	Populus balsamifera	16	790	1	6	7	7	7	4	3	South	M	Fair	Fair	Single stem forming spreading crown from 4 m in grass verge.	None.	None.	${ }^{20+}$	${ }^{\text {B1 }}$	290	10
T0858	0858	White poplar	Populus alba	16	700	1	6	6	6	6	4	3	East	M	Fair	Fair	Single stem forming spreading crown in grass verge.	None.	None.	${ }^{20+}$	${ }^{\text {B1 }}$	222	8
60859	0859	Mixed Species Group	N/a	16	380	1	4	4	4	4	4	4	South	ем	Fair	Fair	Mixed species shelter belt that extends to junction at bridge, construction works being undertaken, new road/cycle track/footpath being excavated to boundary line.	Remove to facilitate proposal and replace as good arboricultural practice.	Part removal due to road widening.	$20+$	${ }^{82}$	64	5
60860	0860	Mixed Species Group	N/a	4	280	1	3	3	3	3	4	4	South	sm	Fair	Fair	Mixed species group that divides lanes.	None.	None.	$1{ }^{1+}$	C^{2}	26	3
60861	0861	Mixed Species Group	N/a	${ }^{14}$	260	1	3	3	3	3	4	3	East	sm	Fair	Fair	Mixed species group that divides road from sip road.	None.	None.	${ }^{10+}$	c2	30	3
T0862	0862	Oak	Quercus robur	16	1050	1	7	8	6	6	3	${ }^{6}$	North	M	Fair	Fair	Two leaders forming spreading crown from 6 m in grass verge between road and cycle path, previously lost top of both leaders.	No-dig above ground methods of construction required.	New surface within RPA.	${ }^{20+}$	${ }^{81}$	499	13

年eterence	20.070.01																							
	30th November - -2nd December 2020																							
	29th - 30th November 2021																							
	2 20th-2 1 st March 2023		Age Class																					
Abreviation	Definfion			Newly planted (<10 y ys old)				Physiological Condifion					Structural Condition			${ }^{\text {Category }}$	High value and conseration			ULLE		Sub category		
Stem Dia.	Stem diameter (mm)		SM (Ssmi-mature)	Newy planted (i<io yrs old)						No obvious healt problems		health	Stuctur	No visible defectis			Moderatae valuc eand consenvalion			${ }^{20+}$		Mainly andsoa		
c.C	Crown clarance (m)			Second dird of ilie expectancyFull age tor species				$\begin{aligned} & \text { Fair } \\ & \hline \text { Poor } \\ & \hline \end{aligned}$	Serious in heath or orying				$\begin{aligned} & \text { Ficir } \\ & \hline \text { Poor } \end{aligned}$				Low value and conservation					Mainly cultural		
L-B.H	Lowest branch	heigh (m)	$\begin{aligned} & \text { EM (Eary mature) } \\ & \hline \text { M (Mature) } \\ & \hline \end{aligned}$												U	Nol stitable for retenion			¢0		-			
L.B.D				Beyond life expectancy \& in decline										G-Group H-Hedgerow W-Woodland				P- Tree is on private land -Tree is not on topographical survey and therore position remains indicitive \# Measurements estimated (tree is in inacessible)						
U.L.E	Direction of lowest branch		V/A (Veteran/Ancien	Ancient characteristics or conservation value					Sutifix															
Tree No.	Tag No.	Species	Botanical Name	H (m)	$\begin{gathered} \text { Stem } \\ \text { Sia. } \\ \hline \end{gathered}$	$\begin{array}{\|c} \text { No of } \\ \text { Stems } \end{array}$	Crown Spread (m)				C.C(m)	$\begin{gathered} \text { L.B.H } \\ (\mathrm{m}) \end{gathered}$	L.B.D	Age	Physiological	Structural	Comments	Recommendations	Impact of Proposal	U.L.E	Cat.	RPA (m2)	RPA Radial distance (m)	
Tree No.		Species					T	E	5	w														
T0866* ${ }^{\text {P }}$		Lawson Cypress	Chamaecyparis lawsoniana	10	$220 \#$	1	2	2	2	2	4	3	South	sm	fair	Fair	Single stem forming compact crown in private garden behind brick wall.	None.	None.	10+	c1	23	3	
60897* P		Mixed Species Group	N/a	8	220\#	1	2	2	2	2	4	4	South	sm	Fair	Fair	Mixed species group comprising olive, leyland cypress, lawson cypress, plum and laurel in private gardens behind brick wall.	None.	None.	${ }^{10+}$	c2	${ }^{23}$	3	
T0898 P	0898	Copper beech	${ }^{\text {Fagus sylvatica }}$	12	650\#	1	4	4	5	4	4	3	South	M	Fair	Fair	Pair either side of entrance to private property forming merged spreading canopy	None.	None.	$20+$	${ }^{82}$	191	8	
T0899 P	0899	Copper beech	$\underset{\substack{\text { Fagus syluatica } \\ \text { Purourra' }}}{ }$	12	${ }^{\text {600\% }}$	1	5	4	5	4	4	3	East	M	Fair	Fair	Pair either side of entrance top pivite property torming merged	None.	None.	${ }^{20+}$	${ }^{\text {B2 }}$	178	7	
нояоо* ${ }^{\text {P }}$		Mixed Species Hedge	N/a	3	${ }^{120 \#}$	1	2	2	2	2	0	0	South	sm	Fair	Fair	Privet and leylandii hedge in private garden behind brick wall.	None.	None.	${ }^{10+}$	c2	6	2	
H0901* P		Privet	Ligustrum	4	110\#	1	2	2	2	2	0	0	East	SM	Fair	Fair	Hedge in private garden behind brick wall.	None.	None.	${ }^{10+}$	c^{2}	4	1	
но902* ${ }^{\text {P }}$		Leylandii	x Cupressocyparis leylandii	9	220\#	1	2	2	2	2	0	0	South	sm	Fair	Fair	Linear hedge around boundary of private gardens behind brick wall.	None.	None.	$10+$	c2	23	3	
нооо3* P		Leylandii		8	2204	1	2	2	2	2	0	0	South	sM	Fair	Fair	Linear hedge around boundary of private gardens behind brick wall.	None.	None.	${ }^{10+}$	c2	23	3	
${ }^{60904 * P}$		Leylandii	$\begin{array}{\|l} x \text { cuppessocyparis } \\ \text { Cevlandii } \end{array}$	15	550\#	1	4	4	4	4	0	0	South	M	Fair	Fair	Linear hedge around boundary of private gardens behind brick	None.	None.	${ }^{10+}$	c2	137	7	
т9995	0905	Hornbeam	Carpinus betulus	12	250	1	3	3	3	3	5	4	East	sm	Poor	Fair	Single stem forming compact crown from 4 m in central reservation.	Remove to facilitate proposal and replace as good arboricultural practice.	Removal due to road widening.	${ }^{10+}$	c1	28	3	
т9906	0906	Hornbeam	Carpinus betulus	${ }^{13}$	300	1	3	3	3	3	5	4	East	M	Fair	Fair	Single stem forming compact crown in central reservation.	Remove to facilitate proposal and replace as good arboricultural practice.	Removal due to road widening.	${ }^{20+}$	${ }^{81}$	${ }^{41}$	4	
т9907	0907	Hornbeam	Carpinus betulus	12	300	1	4	4	4	4	5	4	South	M	Fair	Fair	Single stem forming compact crown in central reservation.	Remove to facilitate proposal and replace as good arboricultural practice.	Removal due to road widening.	${ }^{20+}$	${ }^{81}$	${ }^{41}$	4	
т9908	0908	Hornbeam	Carpinus betulus	9	240	1	3	3	3	3	5	4	Esast	M	Fair	Fair	Single stem forming compact crown in central reservation.	Remove to facilitate proposal and replace as good arboricultural practice.	Removal due to road widening.	$20+$	${ }^{81}$	28	3	
то909	0909	Hornbeam	Carpinus betulus	${ }^{13}$	410	1	4	4	4	4	5	4	South	M	Fair	Fair	Single stem forming compact crown in central reservation.	Remove to facilitate proposal and replace as good arboricultural practice.	Removal due to road widening.	${ }^{20+}$	${ }^{81}$	72	5	
т0910	0910	Hornbeam	Carpinus betulus	${ }^{12}$	300	1	4	4	4	4	5	4	South	M	Fair	Fair	Single stem forming compact crown in central reservation.	Follow relevant method statements when working within RPA.	Resurfacing within PPA.	$20+$	${ }^{81}$	${ }^{41}$	4	
т0911	0911	Hornbeam	Carpinus betulus	12	420	1	5	5	5	5	5	4	South	M	Fair	Fair	Single stem forming compact crown in central reservation.	Follow relevant method statements when working within RPA.	Resurfacing within RPA.	${ }^{20+}$	${ }^{81}$	82	5	
т0912	0912	Hornbeam	Carpinus betulus	12	380	1	5	5	5	5	5	4	West	M	Fair	Fair	Single stem forming compact crown in central reservation.	Follow relevant method statements when working within RPA.	Resurfacing within RPA.	${ }^{20+}$	${ }^{81}$	64	5	
т0913	0913	Field maple	Acer campestre	8	390	1	4	5	5	6	4	4	West	M	Fair	Fair	Single stem forming spreading crown from 4 m in grass verge between road and cycle path.	Follow relevant method statements when working within RPA.	Resurfacing within RPA.	${ }^{20+}$	${ }^{81}$	72	5	
т0914	0914	Lime	Tila sp.	8	180	1	3	4	3	3	3	5	West	sm	Fair	Fair	Single stem forming compact crown from 4 m in grass verge between road and cycle path.	Follow relevant method statements when working within RPA.	Resurfacing within RPA.	${ }^{20+}$	${ }^{81}$	14	2	
т0915	0915	Norway maple	Acer platanoides	14	560	1	5	6	4	6	5	4	North	м	${ }_{\text {Page }} \begin{aligned} & \text { Fair } \\ & 36 \text { of } 78\end{aligned}$	Fair	Single stem forming spreading crown from 4 m in grass verge between road and cycle path.	Follow relevant method statements when working within RPA.	Resurfacing within RPA.	$20+$	${ }^{81}$	137	7	

Reference	20.070.01																						-7\%			
Survey Dates	17ih- 3 1st A August 2020																									
	3 30th November - -2nd Deceember 2020																									
	29th - 30th November 2021																									
Abreviliton	$\frac{2004-212 \text { t March } 2023}{\text { Deinition }}$		Age Class					Physiological Condition					Structural Condition			Category				U.L.E	Sub calegory					
	Definition			Newly planted (<10 y ys old)									High value and conseration				suo cal	INainy arooricu								
Stem Dia.	Stem diameter (mm)		SM (Semi-mature)	First third of life expectancy				${ }_{\text {Fair }}^{\text {Fair }}$	No obvius healt problems							$\begin{aligned} & \text { Goood } \\ & \text { fair } \\ & \hline \text { Paor } \\ & \hline \end{aligned}$			${ }^{8}$	Moderate value and consenvalion			${ }^{20+}$		Maniny landsca	
C.C	${ }_{\text {Crawn learanee }}(m)$			Second thid of ilie expectancy					Serious ill health or dying								Low value and conseration			${ }_{10+}^{1+}$		Mainy cultural				
			$\frac{\text { EM (Early mature) }}{\text { M (Mature) }}$												U	Not suitable for remition			< 6							
L.B.D				Beyond life expectancy \& in decinine																						
U.L.E	Direction of lowest branchUsetul Ife expectanco (ys)		V/A (Veteran/Ancient)	Ancient characterisitics or conservaion value						Suftix:			G-Groun H-Hedgerow W-Wood	oup H-He	gerow w-Wood	odland				P. Tree is on private land TTree is not on topographical survey and therfore position remains indicitive \# Measurements estimated (tree is inaccessibile)						
Tree No.	Tag No.	Species	Botanical Name	H(m)	$\begin{aligned} & \text { Stem } \\ & \text { Dia. } \end{aligned}$	$\begin{array}{\|l\|} \hline N o \text { of } \\ \text { Stems } \\ \hline \end{array}$	Crown Spread (m)				$\begin{aligned} & \text { c.c } \\ & (\mathrm{m}) \end{aligned}$	$\begin{array}{\|c\|c\|} \hline \text { L.B.H. } \\ (\mathrm{m}) \end{array}$	L.B.D	Age	Physiological	Structural	Comments	Recommendations	Impact of Proposal	U.L.E	cat.	RPA (m2)	RPA Radial distance (m)			
T1009	1009	Hornbeam	Carpinus betulus	12	180	1	3	3	3	2	4	4	Esast	sm	Fair	Fair	Single stem forming compact crown from 4 m in pavement.	None.	None.	$20+$	${ }^{81}$	14	2			
T1010	1010	Hornbeam	Carrinus betulus	12	230	1	3	3	3	2	4	4	South	sm	Fair	Fair	Single stem forming compact crown from 4 m in pavement.	None.	None.	${ }^{20+}$	${ }^{\text {B1 }}$	${ }^{23}$	3			
${ }^{\text {T1011 }}$	1011	Hornbeam	Carpinus betulus	12	${ }^{230}$	1	3	3	3	2	4	4	South	sm	Fair	Fair	Single stem forming compact crown from 4 m in pavement.	None.	None.	${ }^{20+}$	${ }^{81}$	23	3			
${ }^{\text {T1012 }}$	1012	Hornbeam	Carrinus betulus	12	240	1	3	3	3	4	4	4	East	sm	Fair	Fair	Single stem forming compact crown from 4 m in pavement.	None.	None.	${ }^{20+}$	${ }^{81}$	28	3			
${ }^{\text {T1013 }}$	1013	Hornbeam	Carrinus betulus	12	250	1	3	3	4	3	4	4	South	sm	Fair	Fair	Single stem forming compact crown from 4 m in pavement.	None.	None.	${ }^{20+}$	${ }^{81}$	28	3			
T1014	1014	Hornbeam	Carpinus betulus	12	180	1	3	3	4	3	4	4	west	sm	Poor	Fair	Single stem forming compact crown from 4 m in pavement.	None.	None.	${ }^{20+}$	${ }^{81}$	${ }^{14}$	2			
T1015	1015	Hornbeam	Carrinus betulus	12	220	1	3	4	4	3	4	4	North	sm	Fair	Fair	Single stem forming compact crown from 4 m in pavement.	None.	None.	${ }^{20+}$	${ }^{81}$	${ }^{23}$	3			
T1016	1016	Hornbeam	Carrinus betulus	12	160	1	3	3	3	3	4	4	North	sm	Fair	Fair	Single stem forming compact crown from 4m in pavement.	None.	None.	${ }^{20+}$	${ }^{81}$	10	2			
${ }^{\text {T1017 }}$	1017	Hornbeam	Carrinus betulus	12	170	1	3	3	3	3	4	4	North	sm	Fair	Fair	Single stem forming compact crown from 4m in pavement.	None.	None.	${ }^{20+}$	${ }^{81}$	14	2			
${ }^{\text {T1018 }}$	1018	Turkish hazel	Coryus colurna	${ }^{12}$	240	1	4	4	4	3	2	5	Esast	sm	Fair	Fair	Single stem forming symetric spreading crown.	$\begin{array}{\|c\|} \text { Remove to facilitate } \\ \text { proposal and replace as } \\ \text { good arboricultural } \\ \text { practice. } \end{array}$	Removal due to road widening.	$20+$	${ }^{81}$	28	3			
${ }^{\text {T1019 }}$	1019	Copper beech	Fagus sylvatica 'Purpurea'	14	860	1	7	7	7	7	6	4	South	M	Fair	Fair	Single stem forming spreading crown from $5 m$ in brick pavers.	Follow relevant method statements when working within RPA.	Resurfacing within RPA.	${ }^{20+}$	${ }^{81}$	327	10			
${ }^{\text {T1020 }}$	1020	Lime	Tilia sp.	14	880	1	5	4	5	6	8	5	Esast	M	Fair	Poor	Two leaders from 5 m , eastern leader with decay, has underwent significant reduction to provide clearance from building and over pavement	Follow relevant method statements when working within RPA.	Resurfacing within RPA.	${ }^{20+}$	${ }^{81}$	346	11			
${ }^{\text {T1021 }}$	1021	Copper beech	Fagus sylvatica 'Purpurea'	17	1140	1	7	7	7	8	6	5	Esast	M	Good	Fair	Single stem forming spreading crown in pavement, prominent high value tree in local landscape.	Follow relevant method statements when working within RPA	Resurfacing within RPA.	${ }^{40+}$	${ }^{\text {A1 }}$	598	14			
${ }^{\text {T1022 }}$	1022	Wild cherry	Prunus avium	14	${ }^{330}$	1	4	4	4	4	4	3	South	M	Poor	Fair	Pair behind stone retaining wall, c.2m higher than pavement.	Follow relevant method statements when working within RPA	Resurfacing within RPA.	${ }^{10+}$	c2	48	4			
${ }^{\text {T1023 }}$	1023	Turkey oak	Quercus cerris	14	380	1	5	5	6	6	3	5	South	m	Fair	Fair	Single stem forming symetric spreading crown from $4 m$, in pit surrounded by bench and plants on pavement.	Follow relevant method statements when working within RPA.	Resurfacing within RPA.	${ }^{20+}$	${ }^{81}$	64	5			
610248		Twrksthazel	conyus colurna	${ }^{14}$	360\#	\pm	4	4	4	4	4	4	South	m	faif	${ }_{\text {foif }}$	Linear group of threeinlondscoped borderin car porkr	Follow relevent method statements when werkfing within RPA.$\|$	Ressufacing within RPA	${ }^{20+}$	${ }^{82}$	55	4			
${ }^{\text {T1025 }}$	1025	London Plane	Platanus \times hisparica	17	1040	1	7	7	7	7	6	5	South	M	Fair	Fair	Single stem forming spreading crown from 5 m in car parking bays by street lamp.	Follow relevant method statements when working within RPA.	Resurfacing within RPA.	${ }^{40+}$	${ }^{\text {A1 }}$	499	13			
${ }^{\text {T1026 }}$	1026	London Plane	Platanus \times hispanica	16	500	1	5	5	5	4	9	3	North	M	Good	Fair	Single stem forming spreading crown from 4 m in car parking bays by street lamp.	$\begin{array}{c}\text { Follow relevant method } \\ \text { statements when } \\ \text { working within RPA. }\end{array}$	Resurfacing within RPA.	${ }^{20+}$	${ }^{81}$	${ }^{113}$	6			
${ }^{\text {T1027 }}$	1027	London Plane	Platanus \times hisparica	18	790	1	7	7	8	6	6	4	South	M	Good	Fair	Two leaders from 4 m forming spreading crown in pavement by $\begin{gathered}\text { parking bays. }\end{gathered}$	Follow relevant method statements when working within RPA.	Resurfacing within RPA.	$40+$	${ }^{\text {A1 }}$	290	10			
${ }^{\text {T1028 }}$	1028	Lime	Tilia sp.	18	670	1	5	7	6	7	4	4	South	M	Good	Fair	Two leaders from 4m forming spreading crown in pavement.	Follow relevant method statements when working within RPA.	Resurfacing within RPA.	${ }^{40+}$	${ }^{\text {A1 }}$	206	8			
${ }^{\text {T1029 }}$	1029	Lime	Tilia sp.	18	680	1	6	7	7	7	6	4	South	M	Page ${ }^{\text {God }}$ of 7 p	Fair	Single stem forming spreading crown from 5 m in pavement.	Follow relevant method statements when working within RPA.	Resurfacing within RPA.	$40+$	${ }^{\text {A1 }}$	206	8			

Page 62 of 78

Tree №.	Tag No.	Species	Botanical Name	H(m)	Stem	No of		own	read	n)	c.C	L.B.H	L.B.D	Age	Physiological	Structural	Comments
${ }^{\text {T1523 }}$ P	4946	Wild cherry	Prunus avium	15	540	1	5	4	2	4	1	1	North	ом	Fair	Fair	Two ivy clad stems forming assymetric crown, basal cavity/decay, stem cavity/decay, hollow, crown dieback
${ }^{\text {T1524 }} \mathrm{P}$	4947	Wild cherry	Prunus avium	12	380	1	3	2	3	4	4	4	South	ем	Fair	Fair	Two iy clad stems from base forming spreading crown
T1525 P	4948	Wild cherry	Prunus avium	12	380	1	5	3	1	4	1	1	East	EM	Fair	Fair	Single ivy clad stem forming assymetric crown
${ }_{61526 P}$	4949	Mixed Species Group	N/a	8	180	1	3	3	3	3	2	2	East	sm	Fair	Fair	Dense mixed species group comprising ash and sycamore, clad with bramble and ivy
${ }^{\text {T1527 P }}$	4950	Sycamore	Acer pseudoplatanus	14	550	1	4	3	4	5	1	1	South	ем	Fair	Fair	Multistem from base, ivy clad, forming spreading crown
${ }^{\text {T1528 P }}$	4951	Lawson cypress	${ }_{\substack{\text { chamaecyparis } \\ \text { lawsoniana }}}$	15	180	1	2	2	2	2	1	1	South	SM	Fair	Fair	Single stem forming compact crown with dense foliage
T1529 P	4952	Sycamore	Acer pseudoplatanus	15	830	1	6	6	6	5	1	1	East	M	Fair	Fair	Three ivy clad stems from base forming spreading crown
T1530 P	4953	Monterey cypress	Cupressus macrocarpa	20	900	1	8	8	8	8	1	1	North	M	Fair	Fair	Dense linear group forming homogeneous canopy
T1531P	4954	Wild cherry	Prunus avium	7	350	1	5	2	1	2	1	1	North	ем	Poor	Poor	Two stems from base, basal cavity/decay, stem cavity/decay, crown failure, dying
61579 P	5002	Mixed Species Group	N/a	12	330	1	4	4	4	4	1	1	South	sm	Fair	Fair	Dense mixed species group comprising sycamore, pine, beech, oak, wild cherry, horse chestnut and Norway maple, behind stone wall on open grass.
T1580 ${ }^{\text {P }}$	3001	Monterey cypress	$\begin{aligned} & \text { Cupressus } \\ & \text { macrocarpa } \end{aligned}$	11	770	1	5	5	6	6	1	1	South	M	Fair	Fair	Multistem from base forming spreading crown
T1581P	3002	swedish whitebeam	Sorbus intermedia	6	380	1	3	3	3	2	1	1	East	SM	Fair	Fair	Multistem from base forming spreading crown
${ }_{\text {T1582 }}$	3003	Pine	Pinus sp.	6	250	1	2	3	3	3	3	3	West	M	Fair	Fair	Single stem forming compact crown
${ }^{\text {T1583 }}$ P	3004	Leylandic cypess	$\begin{array}{\|l} \text { x Cupressocyparis } \\ \text { leylandii } \end{array}$	11	630	1	3	5	5	5	1	1	South	M	Fair	Fair	Multistem from base forming spreading assymetric crown, codominant limb failure
T1584P	3005	Lombardy poplar	$\begin{array}{\|l} \text { Populus nigra } \\ \text { 'Italica' } \end{array}$	16	490	1	2	2	2	2	1	1	South	M	Fair	Fair	Single ivy clad stem forming compatt crown
${ }^{\text {T1585 }}$ P	3006	Leylandic cypress	x Cupressocyparis leylandii	12	690	1	3	3	5	3	5	5	East	м	Fair	Fair	Two ivy clad stems from 2 m forming spreading crown, limb failure
${ }_{\text {T1586 P }}$	3007	Pine	Pinus sp.	16	480	1	4	2	2	3	3	3	South	m	Fair	Fair	Single iny clad stem forming compact crown
${ }^{\text {T1587P }}$	3008	Pine	Pinus sp.	6	280	1	1	1	1	1	N/a	N/a	N/a	Dead	Dead	Dead	Dead
T1588 ${ }^{\text {P }}$	3009	Lombardy poplar	$\begin{array}{\|l} \hline \text { Populus nigra } \\ \text { 'talica' } \end{array}$	15	330	1	1	1	2	1	2	2	South	ем	Fair	Fair	Single ivy clad stem forming compact crown
T1589 P	3010	Leylandic cypess	$\begin{array}{\|l} x \text { Cupressocyparis } \\ \text { leylandii } \end{array}$	16	550	1	3	5	3	5	1	1	East	m	Fair	Fair	Two stems from base forming spreading crown
T1590 P	3011	Norway maple	Acer platanoides	8	150	1	4	4	4	2	2	2	South	Sm	Fair	Fair	Two ivy clad leaders from 3 m forming supressed crown

Recommendations	Impact of Proposal	U.L.E	Cat.	RPA (m2)	RPA Radial distance (m)
Remove ivy to allow full visual inspection	None.	<10	u	137	7
None	None.	10+	c1	64	5
None	None.	10+	c1	64	5
None	None.	10+	c2	14	2
Remove to facilitate proposal and replace as good arboricultural practice.	Removal to failitate construction of new Woodbrook Lodge.	10+	c1	137	7
None	None.	${ }^{10+}$	c1	14	2
None	None.	${ }^{20+}$	${ }^{81}$	308	10
None	None.	${ }^{20+}$	${ }^{82}$	366	11
Fell and replace as good arboricultural practice (<3 months).	Removal to facilitate road widening and cycle lane.	<10	u	55	4
Remove c. $442 \mathrm{~m}^{2}$ to facilitate development proposal and replace as good arboricultural practice	Removal to facilitate road widening and set back of wall.	10+	c2	55	4
Clear lamp	None.	10+	c1	272	9
None	None.	10+	$\mathrm{Cl}^{\text {c1 }}$	64	5
None	None.	10+	${ }^{\text {c1 }}$	28	3
Remove to facilitate proposal and replace as good arboricultural practice.	Removal to facilitate new cycle path into Colaiste Eoin.	10+	c1	177	8
Remove ivy to allow full visual inspection	None.	10+	c1	113	6
Remove ivy to allow full visual inspection	None.	10+	c1	222	8
Remove ivy to allow full visual inspection	None.	10+	c1	102	6
Fell and replace as good arboricultural practice (<3 months).	None.	<10	u	${ }^{34}$	3
Remove ivy to allow full visual inspection	None.	10+	c1	48	4
Remove to facilitate proposalal and replace as good arboricultural practice.	Removal to facilitate new cycle path into Colaiste Eoin.	10+	c1	137	7
Remove to facilitate proposal and replace as good arboricultural practice	Removal to facilitate new cycle path into Colaiste Eoin.	10+	c1	10	2

Tree No.	Tag No.	Species	Botanical Name	$\mathrm{H}(\mathrm{m})$	Stem Dia.	No of	${ }^{\mathrm{N}}$	E	read		c.c.	L.B.H	L.B.D	Age	Physiological	Structural	Comments	Recommendations	Impact of Proposal	U.L.E	cat.	RPA (m2)	RPA Radial distance (m)
${ }^{\text {T1662 }}$	N/a	Lime	Tilia sp.	16	520	1	5	10	2	3	0	0	East	M	Fair	Poor	Single stem forming spreading crown, crown failure with loss of central leader in upper crown.	$\left\{\begin{array}{c} \text { Remove to facilitate } \\ \text { proposal and replace as } \\ \text { good arboricultural } \\ \text { practice. } \end{array}\right.$	Removal due to road widening.	${ }^{10+}$	c1	125	6
${ }^{\text {T1663 }}$	N/a	Horse chestrut	Aesculus hippocastanum	8	440	1	1	4	6	6	2	2	South	m	Fair	Poor	Single stem forming supressed assymetric crown, limb failures with tear out wounds and cavities to stem, single limb extended over road.	Remove to facilitate proposal and replace as good arboricultural practice.	Removal due to road widening.	${ }^{10+}$	C1	92	5
${ }^{16664(P)}$	N/a	Ash	Fraxinus excelsior	7	280	2	2	3	5	3	0	1	South	sm	Fair	Fair	Two leaders from 1 m forming spreading crown, by wall.	Remove to facilitate proposal and replace as good arboricultur practice	Removal due to road widening.	${ }^{10+}$	c1	${ }^{34}$	3
${ }^{1} 1665$ (P)	N/a	Sweet chestrut	Castanea sativa	8	580	1	4	4	5	3	-	0	South	M	Fair	Fair	Single ivy cla stem forming spreading crown.	Remove to facilitate proposal and replace as good arboricultura practice	Removal due to road widening.	${ }^{20+}$	${ }^{81}$	150	7
T1666(P)	N/a	Rowan	Sorbus aucuparia	7	240	1	3	2	3	3	2	2	East	SM	Fair	Fair	Single stem forming compact crown.	None	None.	${ }^{20+}$	${ }^{81}$	${ }^{28}$,
${ }^{\text {T1667 (P) }}$	N/a	Rowan	Sorbus aucuparia	7	270	1	2	-	3	4	2	2	East	SM	Fair	Fair	Single stem forming compact crown.	None	None.	$\underline{20+}$	$\stackrel{81}{81}$	34	3
$\begin{aligned} & \text { T1668(P) } \\ & \hline T 1669(P) \end{aligned}$	N/a	${ }_{\text {Rowan }}^{\text {Rowan }}$	Sorbus sucuparia	7	240 270	$\stackrel{1}{1}$	3	2	$\stackrel{2}{2}$	${ }_{4}^{2}$	$\frac{1}{2}$	${ }_{2}^{2}$	West	SM	$\underset{\text { Fair }}{\substack{\text { Fair }}}$	$\underset{\text { Fair }}{\substack{\text { Fair }}}$	Single stem forming compact crown. Single stem forming compact crown.	None None	None.	$\stackrel{\text { 20+ }}{20+}$	$\stackrel{81}{81}$	28 34	3
T^{1670} (P)	N/a	Ash	Fraxinus excelsior	5	180	2	3	3	3	2	1	1	North	sm	Fair	Poor	Two leaders from 0.5m forming assymetric crown, by wall.	$\begin{aligned} & \text { Remove to facilitate } \\ & \text { proposal and replace as } \\ & \text { good arboricultural } \\ & \text { practice. } \end{aligned}$	Removal due to road widening.	${ }^{10+}$	c1	14	2
$\mathrm{T}_{1671 \text { (P) }}$	N/a	Flowering cherry	Prunus 'Kazzan'	7	420\#	4	5	6	3	5	2	2	West	M	Fair	Fair	Four leaders from 1 m forming spreading crown, heavily pruned.	None	None.	${ }^{10+}$	c1	82	5
T1672 (P)	N/a	Hornbeam	Carpinus betulus	15	770	1	10	6	3	8	2	2	North	м	Fair	Fair	Single stem forming road spreading crown.	No-dig above ground methods of construction required.	New surface within RPA.	${ }^{40+}$	${ }^{\text {A1 }}$	272	9
T1673(P)	N/a	Hormbeam	Carpinus betulus	16	570	1	9	4	4	3	0	0	South	M	Fair	Fair	Single ivy clad stem forming spreading crown	No-dig above ground methods of construction required.	New surface within RPA.	${ }^{40+}$	${ }^{\text {A1 }}$	150	7
T1674(P)	N/a	Hormbeam	Carpinus betulus	14	400	1	6	2	3	1	0	0	South	M	Fair	Fair	Single ivy cla stem forming spreading crown	No-dig above ground methods of construction required.	New surface within RPA.	${ }^{40+}$	${ }^{\text {A1 }}$	72	5
T1675 (P)	N/a	Hormbeam	Carpinus betulus	17	720	1	10	9	4	5	2	2	East	M	Fair	Fair	Single ivy clad stem forming spreading crown	No-dig above ground methods of construction required.	New surface within RPA.	${ }^{40+}$	${ }^{\text {A1 }}$	238	9

Tree Impact Plans

